hadoop最主要的2个基本的内容要了解。上次了解了一下HDFS,本章节主要是了解了MapReduce的一些基本原理。

MapReduce文件系统:它是一种编程模型,用于大规模数据集(大于1TB)的并行运算。MapReduce将分为两个部分:Map(映射)和Reduce(归约)。

当你向mapreduce框架提交一个计算作业,它会首先把计算作业分成若干个map任务,然后分配到不同的节点上去执行,每一个map任务处理输入数据中的一部分,当map任务完成后,它会生成一些中间文件,这些中间文件将会作为reduce任务的输入数据。Reduce任务的主要目标就是把前面若干个map的数据汇总到一起并输出。

MapReduce的体系结构:

主从结构:主节点,只有一个:JobTracker;从节点,有很多个:Task Trackers

JobTracker负责:接收客户提交的计算任务;把计算任务分给Task Trackers执行;监控Task Tracker的执行情况;

Task Trackers负责:执行JobTracker分配的计算任务。

MapReduce是一种分布式计算模型,由google提出,主要用于搜索领域,解决海量数据的计算问题。

MR由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce()两个函数,即可实现分布式计算,非常简单。

这两个函数的形参是key、value,表示函数的输入信息。

MapReduce执行流程:

MapReduce原理:

执行步骤:

1. map任务处理

1.1 读取输入文件内容,解析成key、value对。对输入文件的每一行,解析成key、value对。每一个键值对调用一次map函数。

1.2 写自己的逻辑,对输入的key、value处理,转换成新的key、value输出。

1.3 对输出的key、value进行分区。

1.4 对不同分区的数据,按照key进行排序、分组。相同key的value放到一个集合中。

1.5 (可选)分组后的数据进行归约。

2.reduce任务处理

2.1 对多个map任务的输出,按照不同的分区,通过网络copy到不同的reduce节点。

2.2 对多个map任务的输出进行合并、排序。写reduce函数自己的逻辑,对输入的key、value处理,转换成新的key、value输出。

2.3 把reduce的输出保存到文件中。

例子:实现WordCountApp

map、reduce键值对格式

函数

输入键值对

输出键值对

map()

<k1,v1>

<k2,v2>

reduce()

<k2,{v2}>

<k3,v3>

JobTracker

负责接收用户提交的作业,负责启动、跟踪任务执行。

JobSubmissionProtocol是JobClient与JobTracker通信的接口。

InterTrackerProtocol是TaskTracker与JobTracker通信的接口。

TaskTracker

负责执行任务

JobClient

是用户作业与JobTracker交互的主要接口。

负责提交作业的,负责启动、跟踪任务执行、访问任务状态和日志等。

MapReduce驱动默认的设置

InputFormat(输入)

TextInputFormat

MapperClass(map类)

IdentityMapper

MapOutputKeyClass

LongWritable

MapOutputValueClass

Text

PartitionerClass

HashPartitioner

ReduceClass

IdentityReduce

OutputKeyClass

LongWritable

OutputValueClass

Text

OutputFormatClass

TextOutputFormat

序列化的概念:

序列化(Serialization)是指把结构化对象转化为字节流。

反序列化(Deserialization)是序列化的逆过程。即把字节流转回结构化对象。

Java序列化(java.io.Serializable)

Hadoop-序列化格式特点:

紧凑:高效使用存储空间。

快速:读写数据的额外开销小

可扩展:可透明地读取老格式的数据

互操作:支持多语言的交互

Hadoop的序列化格式:Writable

序列化在分布式环境的两大作用:进程间通信,永久存储。

Hadoop节点间通信。

MapReduce输入的处理类:

FileInputFormat:是所有以文件为数据源的InputFormat实现的基类,FileInputFormat保存作为job输入的所有文件,并实现了对输入文件计算splits的方法。至于获得记录的方法有不同的子类--TextInputFormat进行实现的。

InPutFormat负责处理MR的输入部分。

InPutFormat的三个作用:

验证作业的输入是否规范

把输入文件切成InputSplit

提供RecordReader的实现类,把InputSplit读到Mapper中进行处理。

FileInputSplit:

◆   在执行mapreduce之前,原始数据被分割成若干split,每个split作为一个map任务的输入,在map执行过程中split会被分解成一个个记录(key-value对),map会依次处理每一个记录。

◆   FileInputFormat只划分比HDFS block大的文件,所以FileInputFormat划分的结果是这个文件或者是这个文件中的一部分.

◆   如果一个文件的大小比block小,将不会被划分,这也是Hadoop处理大文件的效率要比处理很多小文件的效率高的原因。

◆    当Hadoop处理很多小文件(文件大小小于hdfs block大小)的时候,由于FileInputFormat不会对小文件进行划分,所以每一个小文件都会被当做一个split并分配一个map任务,导致效率底下。

例如:一个1G的文件,会被划分成16个64MB的split,并分配16个map任务处理,而10000个100kb的文件会被10000个map任务处理。

TextInputFormat:

◆  TextInputformat是默认的处理类,处理普通文本文件。

◆  文件中每一行作为一个记录,他将每一行在文件中的起始偏移量作为key,每一行的内容作为value。

◆  默认以\n或回车键作为一行记录。

◆  TextInputFormat继承了FileInputFormat。

InputFormat类的层次结构:

分布式计算框架-MapReduce 基本原理(MP用于分布式计算)的更多相关文章

  1. Hadoop 三剑客之 —— 分布式计算框架 MapReduce

    一.MapReduce概述 二.MapReduce编程模型简述 三.combiner & partitioner 四.MapReduce词频统计案例         4.1 项目简介      ...

  2. Hadoop 学习之路(三)—— 分布式计算框架 MapReduce

    一.MapReduce概述 Hadoop MapReduce是一个分布式计算框架,用于编写批处理应用程序.编写好的程序可以提交到Hadoop集群上用于并行处理大规模的数据集. MapReduce作业通 ...

  3. Hadoop 系列(三)—— 分布式计算框架 MapReduce

    一.MapReduce概述 Hadoop MapReduce 是一个分布式计算框架,用于编写批处理应用程序.编写好的程序可以提交到 Hadoop 集群上用于并行处理大规模的数据集. MapReduce ...

  4. Hadoop整理三(Hadoop分布式计算框架MapReduce)

    一.概念 MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算.概念"Map(映射)"和"Reduce(归约)",是它们的主要思想.它极大 ...

  5. Hadoop整理四(Hadoop分布式计算框架MapReduce)

    Apache Hadoop YARN (Yet Another Resource Negotiator,另一种资源协调者)是一种新的 Hadoop 资源管理器,它是一个通用资源管理系统,可为上层应用提 ...

  6. 2_分布式计算框架MapReduce

    一.mr介绍 1.MapReduce设计理念是移动计算而不是移动数据,就是把分析计算的程序,分别拷贝一份到不同的机器上,而不是移动数据. 2.计算框架有很多,不是谁替换谁的问题,是谁更适合的问题.mr ...

  7. 大数据时代之hadoop(五):hadoop 分布式计算框架(MapReduce)

    大数据时代之hadoop(一):hadoop安装 大数据时代之hadoop(二):hadoop脚本解析 大数据时代之hadoop(三):hadoop数据流(生命周期) 大数据时代之hadoop(四): ...

  8. 分布式计算框架学习笔记--hadoop工作原理

    (hadoop安装方法:http://blog.csdn.net/wangjia55/article/details/53160679这里不再累述) hadoop是针对大数据设计的一个计算架构.如果你 ...

  9. hadoop-MapReduce分布式计算框架

    计算框架: MapReduce:主要用于离线计算 Storm:流式计算框架,更适合做实时计算 stack:内存计算框架,快速计算 MapReduce设计理念: --何为分布式计算 --移动计算,而不是 ...

随机推荐

  1. Java8 新特性 —— 函数式编程

    本文部分摘录自 On Java 8 概述 通常,传递给方法的数据不同,结果也不同.同样的,如果我们希望方法被调用时的行为不同,该怎么做呢?结论是:只要能将代码传递给方法,那么就可以控制方法的行为. 说 ...

  2. MQ-gogogo

    1. RocketMQ https://github.com/alibaba/RocketMQ/wiki/quick-start 2. RabbitMQ https://www.rabbitmq.co ...

  3. Gromacs命令-Chapter1

    Gromacs的命令非常多,下面我将我最近用到的先总结一下.标题上也写了这只是Chapter1,以后有新的会继续写Chapter2...等等. 下面这个网址http://manual.gromacs. ...

  4. KafkaProducer 发送消息流程

    Kafka 的 Producer 发送消息采用的是异步发送的方式.在消息发送的过程中,涉及到了 两个线程--main 线程和 Sender 线程,以及一个线程共享变量--RecordAccumulat ...

  5. 查找数组中第k大的数

    问题:  查找出一给定数组中第k大的数.例如[3,2,7,1,8,9,6,5,4],第1大的数是9,第2大的数是8-- 思考:1. 直接从大到小排序,排好序后,第k大的数就是arr[k-1]. 2. ...

  6. windows 无法启动 SQL Server (MSSQLSERVER) 服务(位于本地计算机上)。错误 1069由于登入失败而无法启动 。

    windows 无法启动 SQL Server (MSSQLSERVER) 服务(位于本地计算机上).错误 1069由于登入失败而无法启动. 今天登录测试服务器突然出现无法登录的情况,经排查发现,SQ ...

  7. Windows SMBv3 CVE-2020-0796 漏洞分析和l漏洞复现

    0x00  漏洞描述 漏洞公告显示,SMB 3.1.1协议中处理压缩消息时,对其中数据没有经过安全检查,直接使用会引发内存破坏漏洞,可能被攻击者利用远程执行任意代码.攻击者利用该漏洞无须权限即可实现远 ...

  8. 信息收集之——旁站、C段

    旁站的概念 ​旁站指的是同一服务器上的其他网站,很多时候,有些网站可能不是那么容易入侵.那么,可以查看该网站所在的服务器上是否还有其他网站.如果有其他网站的话,可以先拿下其他网站的webshell,然 ...

  9. [PHP安全特性学习]is_numeric()函数安全漏洞

    简介 PHP函数的安全特性-is_numerice() 函数 简介 PHP is_numeric() 函数 is_numeric() 函数用于检测变量是否为数字或数字字符串. 语法: bool is_ ...

  10. wordpress 博客环境安装

    WordPress是使用PHP语言开发的博客平台,用户可以在支持PHP和MySQL数据库的服务器上架设属于自己的网站.也可以把 WordPress当作一个内容管理系统(CMS)来使用. 1.数据库环境 ...