一道矩阵乘法的神题 早上的时候我开挂了 想了2h想出来了。

关于这道题我推了很多矩阵 最终推出两个核心矩阵 发现这两个矩阵放在一起做快速幂就行了。

当k==1时 显然的矩阵乘法 多开一个位置维护前缀和即可。当然也可以 公式法:\(f_1+f_2+...+f_n=f_{n+2}-1\)

证明其 只需要数学归纳法即可。

当k==2时 不难发现 要求出\((f_1+f_2+...f_n)+(f_2+...f_{n+1})+...(f_n+...f_{2n-1})\)

把这个东西 画成图 可以发现是一个平行四边形。

考虑对这个东西求和 我开始想了一个比较麻烦的方法容斥。

可以发现 如果我把整个矩阵都给求出来 只需要减掉不合法方案即可\(f_1\)被多加了n-1次 \(f_2\)被多加了n-2次。

对这种形式求和怎么做?于是 我又构造了一个矩阵 多开两个位置 一个表示普通前缀和 一个表示当前前缀和。

发现这样就能把答案算出来了。

以上和正解毫无关系 只不过是我考试的时候的想法。

以下是正解:

还是考虑k==3 发现刚才的面形成了体 不过类似于平行四边形体?但是在题目角度来说其实是正方体。

对这个东西求和 发现很难 刚才的容斥不能做了。

不过此时可以发现每一面 由上一面加上上一面得到。

转回头看k==2 发现每一条线可以有上面和上上面两条线得到。

此时 我们就可以发现一个非常特殊的条件 每个维度也是由上一个维度给推出来的。

此时我们对于每个维度单独做 然后利用上个维度做当前维度。

这样我们得到了一个klogn的做法。注意此时的矩阵为\(4\cdot 4\)的。

考虑优化。

可以发现求完一个维度之后 我们要求下一个维度。

这个过程还是一个重复的过程。

我们可以不手动调整 而是考虑构造一个矩阵帮我们进行调整。

这个矩阵也很容易构造。

剩下的就是先求出一个维度 然后利用维度生成维度是重复的。

矩阵快速幂来做即可。

总之 构造出来两个矩阵 可以发现 矩阵快速幂这两个矩阵的乘积即可。

非常巧妙。

const int MAXN=110;
int n,k,T,m;
ll f[5],w[5];
struct wy
{
ll a[5][5];
wy(){memset(a,0,sizeof(a));}
wy friend operator *(wy a,wy b)
{
wy c;
rep(1,m,i)rep(1,m,j)rep(1,m,k)
c.a[i][j]=(c.a[i][j]+a.a[i][k]*b.a[k][j])%mod;
return c;
}
wy friend operator ^(wy a,int p)
{
wy c;
rep(1,m,i)rep(1,m,j)c.a[i][j]=a.a[i][j];
while(p)
{
if(p&1)c=c*a;
a=a*a;p=p>>1;
}
return c;
}
}A,B,C;
int main()
{
freopen("fib.in","r",stdin);
freopen("fib.out","w",stdout);
get(T);
while(T--)
{
get(n);get(k);m=4;
if(n==1){puts("1");continue;}
A.a[1][1]=0;A.a[1][2]=1;A.a[1][3]=0;A.a[1][4]=1;
A.a[2][1]=1;A.a[2][2]=1;A.a[2][3]=1;A.a[2][4]=1;
A.a[3][1]=0;A.a[3][2]=0;A.a[3][3]=1;A.a[3][4]=0;
A.a[4][1]=0;A.a[4][2]=0;A.a[4][3]=0;A.a[4][4]=1;
B.a[3][1]=1;B.a[3][3]=1;B.a[4][2]=1;B.a[4][4]=1;
A=A^(n-2);C=A;
--k;
if(k)
{
A=A*B;
A=A^(k-1);
A=A*C;
}
f[1]=0;f[2]=1;f[3]=0;f[4]=1;
memset(w,0,sizeof(w));
rep(1,m,i)rep(1,m,j)w[i]=(w[i]+f[j]*A.a[j][i])%mod;
putl(w[m]);
}
return 0;
}

4.17 斐波那契数列 K维斐波那契数列 矩阵乘法 构造的更多相关文章

  1. P2461 [SDOI2008]递归数列 矩阵乘法+构造

    还好$QwQ$ 思路:矩阵快速幂 提交:1次 题解: 如图: 注意$n,m$如果小于$k$就不要快速幂了,直接算就行... #include<cstdio> #include<ios ...

  2. 【严蔚敏】【数据结构题集(C语言版)】1.17 求k阶斐波那契序列的第m项值的函数算法

    已知k阶斐波那契序列的定义为 f(0)=0,f(1)=0,...f(k-2)=0,f(k-1)=1; f(n)=f(n-1)+f(n-2)+...+f(n-k),n=k,k+1,... 试编写求k阶斐 ...

  3. k阶斐波那契数列fibonacci第n项求值

    已知K阶斐波那契数列定义为:f0 = 0,  f1 = 0, … , fk-2 = 0, fk-1 = 1;fn = fn-1 + fn-2 + … + fn-k , n = k , k + 1, … ...

  4. K阶斐波那契数列--------西工大NOJ习题.10

    K阶斐波那契数列--------西工大NOJ习题.10 原创不易,转载请说明出处!!! 科普:k阶斐波那契数列的0到n-1项需要有初始值. 其中,0到n-2项初始化为0,第n-1项初始化为1. 在这道 ...

  5. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  6. 【poj3070】矩阵乘法求斐波那契数列

    [题目描述] 我们知道斐波那契数列0 1 1 2 3 5 8 13…… 数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1). 求斐波那契数列中的第n位mod 10000的值. [ ...

  7. Luogu P1962 斐波那契数列(矩阵乘法模板)

    传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...

  8. 矩阵乘法&&矩阵快速幂&&最基本的矩阵模型——斐波那契数列

    矩阵,一个神奇又令人崩溃的东西,常常用来优化序列递推 在百度百科中,矩阵的定义: 在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵.这一 ...

  9. [luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

随机推荐

  1. HDU 5961 传递 题解

    题目 我们称一个有向图G是 传递的,当且仅当对任意三个不同的顶点a,,若G中有 一条边从a到b且有一条边从b到c ,则G中同样有一条边从a到c. 我们称图G是一个 竞赛图,当且仅当它是一个有向图且它的 ...

  2. Caocao's Bridges HDU - 4738 求桥

    题目描述 Caocao was defeated by Zhuge Liang and Zhou Yu in the battle of Chibi. But he wouldn't give up. ...

  3. scrapy框架携带cookie访问淘宝购物车

    我们知道,有的网页必须要登录才能访问其内容.scrapy登录的实现一般就三种方式. 1.在第一次请求中直接携带用户名和密码. 2.必须要访问一次目标地址,服务器返回一些参数,例如验证码,一些特定的加密 ...

  4. 央行数字货币(CBDCs)的互操作性至关重要

    CBDCs(央行数字货币)将在我们的有生之年产生重大的金融转变.然而,除非这些工具吸取了法定货币的教训,否则创新将毫无意义.互操作性一直是影响CBDC采用和功能的最重要障碍之一.因此,各国央行在这一理 ...

  5. 【学习】从.txt文件读取生成编译代码。

    string code = null; String projectName = Assembly.GetExecutingAssembly().GetName().Name; // 1. 生成要编译 ...

  6. NameNode是如何存储元数据的?

    1.NN的作用 保存HDFS上所有文件的元数据! 接受客户端的请求! 接受DN上报的信息,给DN分配任务(维护副本数)! 2.元数据的存储 元数据存储在fsiamge文件+edits文件中! fsim ...

  7. day74 bbs项目☞点赞与评论

    目录 一.文章详情展示 1 将侧边栏做成inclusion_tag 二.点赞点踩功能 三.评论功能 整体总结: 在出现bug的时候,先判断是前端bug还是后端bug,再判断bug错误类型,以及报错信息 ...

  8. php批量 下载图片

    <?php set_time_limit(0); $file = fopen("index.csv",'r');$temp = [];$i=0;$firstsku='';wh ...

  9. 实现new关键字

    一.new做了什么 1.创建了一个全新的对象. 2.这个对象会被执行[[Prototype]](也就是__proto__)链接. 3.生成的新对象会绑定到函数调用的this. 4.通过new创建的每个 ...

  10. Python pip 国内镜像大全及使用办法

    Python pip 国内镜像大全及使用办法 一.国内镜像 清华 https://pypi.tuna.tsinghua.edu.cn/simple 豆瓣 pip install -i http://p ...