cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记
1. 深度学习面临的问题:
1)模型越来越大,很难在移动端部署,也很难网络更新。
2)训练时间越来越长,限制了研究人员的产量。
3)耗能太多,硬件成本昂贵。
解决的方法:联合设计算法和硬件。

计算硬件可以分为通用和专用两大类。通用硬件又可以分为CPU和GPU。专用硬件可以分为(FPGA和ASIC,ASIC更高效,谷歌的TPU就是ASIC)。
2. Algorithms for Efficient Inference
1)Pruning,修剪掉不那么重要的神经元和连接。第一步,用原始的网络训练;第二步,修剪掉一部分网络;第三步,继续训练剩下的网络。不断重复第二步和第三步。在不损失精度的情况下,网络可以缩小到原来的十分之一(继续缩小精度会变差)。
2)Weight Sharing,权重并不需要那么精确,可以把一些近似的权重看成一样的(比如2.09、2.12、1.92、1.87可以全部看成2)。也是在原始训练基础上,用某种方式简化权重,然后不断训练调整简化权重的方式。在不损失精度的情况下,网络可以缩小到原来的八分之一。
前两种方法可以结合使用,网络可以缩小到原来的百分之几。有个名字Deep Compression。
3)Quantization,数据类型。TPU的设计主要就是优化这一部分。
4)Low Rank Approximation,把大网络拆成一系列小网络。
5)Binary(二元)/Ternary(三元) Net,很疯狂地把权重离散化成(-1,0,1)三种。
6)Winograd Transformation,一种更高效的求卷积的做法。
3. Hardware for Efficient Inference
这个方向各种硬件的共同目的是减少内存的读取(minimize memory access)。硬件需要能用压缩过的神经网络做预测。
EIE(Efficient Inference Engine)(Han et al. ISCA 2016):稀疏权重(扔掉为0的权重)、稀疏激活值(扔掉为0的激活值)、Weight Sharing(4-bit)。
4. Algorithms for Efficient Training
1)Parallelization。CPU按照摩尔定律发展,这些年单线程的性能已经提高的非常缓慢,而核的数量在不断提高。

2)Mixed Precision with FP16 and FP32,正常是用32位计算,但计算权重更新的时候用16位。
3)Model Distillation,用训练的很好的大网络的“软结果”(soft targets)作为标签提供给压缩过的小网络训练。这是Hinton的一篇论文提出的,里面解释了为什么软结果比ground truth更好。
4)DSD(Dense-Sparse-Dense Training),先对原始的稠密的网络做Pruning,训练稀疏的网络后,再Re-Dense出稠密的网络。Han说这是先学习树的枝干,再学习叶子。相比原来的稠密网络,Re-Dense出的精度更高。
5. Hardware for Efficient Training
Computation和Memory bandwidth是影响整体性能的两个因素。
Han对比Nvidia Pascal和Volta,猛吹了一波Volta。。。Volta有120个Tensor Core,非常擅长矩阵运算。
cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记的更多相关文章
- cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning
讲课嘉宾是Song Han,个人主页 Stanford:https://stanford.edu/~songhan/:MIT:https://mtlsites.mit.edu/songhan/. 1. ...
- 韩松毕业论文笔记-第六章-EFFICIENT METHODS AND HARDWARE FOR DEEP LEARNING
难得跟了一次热点,从看到论文到现在已经过了快三周了,又安排了其他方向,觉得再不写又像之前读过的N多篇一样被遗忘在角落,还是先写吧,虽然有些地方还没琢磨透,但是paper总是这样吧,毕竟没有亲手实现一下 ...
- cs231n spring 2017 lecture9 CNN Architectures 听课笔记
参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...
- cs231n spring 2017 lecture9 CNN Architectures
参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...
- cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记
1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...
- cs231n spring 2017 lecture7 Training Neural Networks II
1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...
- cs231n spring 2017 lecture13 Generative Models 听课笔记
1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...
- cs231n spring 2017 lecture11 Detection and Segmentation 听课笔记
1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种"Unpooling"." ...
- cs231n spring 2017 Python/Numpy基础 (1)
本文使根据CS231n的讲义整理而成(http://cs231n.github.io/python-numpy-tutorial/),以下内容基于Python3. 1. 基本数据类型:可以用 prin ...
随机推荐
- 手把手教你用vue-cli搭建vue项目
手把手教你用vue-cli搭建vue项目 本篇主要是利用vue-cli来搭建vue项目,其中前提是node和npm已经安装好,文章结尾将会简单提到一个简单的例子.使用vue-cli搭建项目最开始我也是 ...
- Java中参数传递问题
Java中参数传递可以分为值传递和引用传递,话不多说直接撸代码 1.传原始类型(int,String等)数据是值传递 package test_1; public class Test { publi ...
- python爬虫小结1
先看正则化,正则化就是描述命令和字符切分.查找.筛选等功能的方便方式. http://www.cnblogs.com/fnng/archive/2013/05/20/3089816.html 一个游戏 ...
- 【java】Date与String之间的转换及Calendar类:java.text.SimpleDateFormat、public Date parse(String source) throws ParseException和public final String format(Date date)
package 日期日历类; import java.text.ParseException; import java.text.SimpleDateFormat; import java.util. ...
- 【java】io流之字节流转为字符流:java.io.OutputStreamWriter和java.io.InputStreamReader
package 文件操作; import java.io.File; import java.io.FileOutputStream; import java.io.IOException; impo ...
- go实例之函数
1.可变参数 示例代码如下: package main import "fmt" // Here's a function that will take an arbitrary ...
- scala写算法-从后缀表达式构造
一个例子,比如ab+cde+**,这是一个后缀表达式,那么如何转换为一棵表达式树呢? 先上代码,再解释: object Main extends App{ import Tree.node def i ...
- S7-200和S7-300profibus-DP通信
一.S7-200CN的cup可以通过EM277接入DP网络 二.CPU315-2DP做主站,S7-200CUP做从站 三. 通信题目 四.硬件组态 1.主站的DP组态,地址为2 2.EM277作为从站 ...
- echarts异步数据加载(在下拉框选择事件中异步更新数据)
接触echarts 大半年了,从不会到熟练也做过不少的图表,隔了一段时间没使用这玩意,好多东西真心容易忘了.在接触echarts这期间也没有总结什么东西,今天我就来总结一下如何在echart中异步加载 ...
- PHP-无限级分类(迭代法创建)
$area = array( array('id'=>1,'name'=>'安徽','parent'=>0), array('id'=>2,'name'=>'海淀','p ...