SparkMLlib学习之线性回归

(一)回归的概念

  1,回归与分类的区别

   分类模型处理表示类别的离散变量,而回归模型则处理可以取任意实数的目标变量。但是二者基本的原则类似,都是通过确定一个模型,将输入特征映射到预测的输出。回归模型和分类模型都是监督学习的一种形式。

  2.回归分类

   线性回归模型:本质上和对应的线性分类模型一样,唯一的区别是线性回归使用的损失函数、相关连接函数和决策函数不同。MLlib提供了标准的最小二乘回归模型在MLlib中,标准的最小二乘回归不使用正则化。但是应用到错误预测值的损失函数会将错误做平方,从而放大损失。这也意味着最小平方回归对数据中的异常点和过拟合非常敏感。因此对于分类器,我们通常在实际中必须应用一定程度的正则化。正则化分为:应用L2正则化时通常称为岭回归(ridge regression),应用L1正则化是称为LASSO(Least Absolute Shrinkage and Selection Operator)。

   决策树模型:决策树同样可以通过改变不纯度的度量方法用于回归分析

(二)SparkMLlib线性回归的应用

  1,数据集的选择

    http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset。

  2.数据集的描述

    此数据是根据一系列的特征预测每小时自行车租车次数,特征类型如下:

  3,数据处理及构建模型

    数据集中共有17 379个小时的记录。接下来的实验,我们会忽略记录中的 instant和 dteday 。忽略两个记录次数的变量 casual 和 registered ,只保留 cnt ( casual 和registered 的和)。最后就剩下12个变量,其中前8个是类型变量,后4个是归一化后的实数变量。对其中8个类型变量,我们使用之前提到的二元编码,剩下4个实数变量不做处理。另外一种二元变量化方法:http://blog.csdn.net/u010824591/article/details/50374904

import org.apache.log4j.{Level, Logger}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.{LabeledPoint, LinearRegressionWithSGD}
import org.apache.spark.mllib.tree.DecisionTree
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} /**
* Created by Damon on 17-5-22.
*/
object Regression {
def main(args: Array[String]): Unit = {
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)
val conf =new SparkConf().setAppName("regression").setMaster("local[4]")
val sc =new SparkContext(conf)
//文件名
val file_bike="hour_nohead.csv"
//调用二元向量化方法
val labeled_file=labeledFile(file_bike,sc)
/*/*对目标值取对数*/
val labeled_file1=labeled_file.map(point => LabeledPoint(math.log(point.label),point.features))
*/
//构建线性回归模型,注该方法在:spark2.1.0已经抛弃了。。。。
val model_liner=LinearRegressionWithSGD.train(labeled_file,10,0.1)
//val categoricalFeaturesInfo = Map[Int,Int]()
//val model_DT=DecisionTree.trainRegressor(labeled_file,categoricalFeaturesInfo,"variance",5,32)
val predict_vs_train=labeled_file.map{
point => (model_liner.predict(point.features),point.label)
//对目标取对数后的,预测方法
/* point => (math.exp(model_liner.predict(point.features)),math.exp(point.label))*/
}
predict_vs_train.take(5).foreach(println(_))
/*
(135.94648455498356,16.0)
(134.38058174607252,40.0)
(134.1840793861374,32.0)
(133.88699144084515,13.0)
(133.77899037657548,1.0)
*/
def labeledFile(originFile:String,sc:SparkContext):RDD[LabeledPoint]={
val file_load=sc.textFile(originFile)
val file_split=file_load.map(_.split(","))
/*构建映射类函数的方法:mapping*/
def mapping(rdd:RDD[Array[String]],index:Int)=
rdd.map(x => x(index)).distinct.zipWithIndex().collect.toMap
/*存储每列映射方法mapping的maps集合*/
var maps:Map[Int,Map[String,Long]] = Map()
/* 生成maps*/
for(i <- 2 until 10)
maps += (i -> mapping(file_split,i))
/*max_size表示每列的特征之和*/
val max_size=maps.map(x =>x._2.size).sum
val file_label=file_split.map{
x =>
var num:Int=0
var size:Int=0
/*构建长度为max_size+4的特征数组,初始值全为0*/
val arrayOfDim=Array.ofDim[Double](max_size+4)
for(j<-2 until 10) {
num = maps(j)(x(j)).toInt
if(j==2) size=0 else size += maps(j-1).size
/*为特征赋值*/
arrayOfDim(size+num)=1.0
}
/*添加后面4列归一化的特征*/
for(j<-10 until 14)
arrayOfDim(max_size+(j-10))=x(j).toDouble
/*生成LabeledPoint类型*/
LabeledPoint(x(14).toDouble+x(15).toDouble,Vectors.dense(arrayOfDim))
}
file_label
}
}

  4,模型性能评价

    (1) MSE是均方误差,是用作最小二乘回归的损失函数,表示所有样本预测值和实际值平方差的平均值。公式如下:

    (2)RMSE是MSE的平方根    

    (3)平均绝对误差(MAE):预测值与实际值的绝对值差的平均值

            

    (4) 均方根对数误差(RMSLE):预测值和目标值进行对数变换后的RMSE.

代码如下:

/*MSE是均方误差*/
val mse=predict_vs_train.map(x => math.pow(x._1-x._2,2)).mean()
/* 平均绝对误差(MAE)*/
val mae=predict_vs_train.map(x => math.abs(x._1-x._2)).mean()
/*均方根对数误差(RMSLE)*/
val rmsle=math.sqrt(predict_vs_train.map(x => math.pow(math.log(x._1+1)-math.log(x._2+1),2)).mean())
println(s"mse is $mse and mae is $mae and rmsle is $rmsle")
/*
mse is 29897.34020145107 and mae is 130.53255991178477 and rmsle is 1.4803867063174845
*/

(三) 改进模型性能和参数调优

  1,变换目标变量

   许多机器学习模型都会假设输入数据和目标变量的分布,比如线性模型的假设为正态分布,这里就将目标值取对数(还可以去sqrt处理)(将上文注释去掉)实现正态分布,结果如为:mse is 47024.572159822106 and mae is 149.28861881845546 and rmsle is 1.4525632598540426

  将上述结果和原始数据训练的模型性能比较,可以看到我们提升了RMSLE的性能,但是却没有提升MSE和MAE的性能。

  2.交叉验证

   1,创建训练集和测试集来评估参数

   2,调节参数来判断对线性模型的影响

迭代次数及步长的影响:

//划分训练集和测试集
val labeled_orign = labeled_file.randomSplit(Array(0.8, 0.2), 11L)
val train_file = labeled_orign()
val test_file = labeled_orign()
/*调节迭代次数*/
val Iter_Results = Seq(, , , , , ).map { param =>
val model = LinearRegressionWithSGD.train(test_file, param, 0.01)
val scoreAndLabels = test_file.map { point =>
(model.predict(point.features), point.label)
}
val rmsle = math.sqrt(scoreAndLabels.map(x => math.pow(math.log(x._1) - math.log(x._2), )).mean)
(s"$param lambda", rmsle)
}
/*迭代次数的结果输出*/
Iter_Results.foreach { case (param, rmsl) => println(f"$param, rmsle = ${rmsl}")}
/*调节步长数的大小*/
val Step_Results = Seq(0.01, 0.025, 0.05, 0.1, 1.0).map { param =>
val model = LinearRegressionWithSGD.train(test_file, , param)
val scoreAndLabels = test_file.map { point =>
(model.predict(point.features), point.label)
}
val rmsle = math.sqrt(scoreAndLabels.map(x => math.pow(math.log(x._1) - math.log(x._2), )).mean)
(s"$param lambda", rmsle)
}
/*步长的结果输出*/
Step_Results.foreach { case (param, rmsl) => println(f"$param, rmsle = ${rmsl}")}
/*results
1 lambda, rmsle = 2.9033629718241167
5 lambda, rmsle = 2.0102924520366092
10 lambda, rmsle = 1.7548482896314488
20 lambda, rmsle = 1.5785106813100764
50 lambda, rmsle = 1.461748782192306
100 lambda, rmsle = 1.4462810196387068
步长
0.01 lambda, rmsle = 1.5785106813100764
0.025 lambda, rmsle = 1.4478358250917658
0.05 lambda, rmsle = 1.5152549319928832
0.1 lambda, rmsle = 1.5687431700715837
1.0 lambda, rmsle = NaN
*/

  结果表明,随着迭代次数的增加,误差确实有所下降(即性能提高),并且下降速率和预期一样越来越小。可以看出为什么不使用默认步长来训练线性模型。其中默认步长为1.0,得到的RMSLE结果为 nan 。这说明SGD模型收敛到了最差的局部最优解。这种情况在步长较大的时候容易出现,原因是算法收敛太快而不能得到最优解。另外,小步长与相对较小的迭代次数(比如上面的10次)对应的训练模型性能一般较差。而较小的步长与较大的迭代次数下通常可以收敛得到较好的解。通常来讲,步长和迭代次数的设定需要权衡。较小的步长意味着收敛速度慢,需要较大的迭代次数。但是较大的迭代次数更加耗时,特别是在大数据集上。

  还可以调节L1正则化和L2正则化参数。 MLlib目前支持两种正则化方法L1和L2。 L2正则化假设模型参数服从高斯分布,L2正则化函数比L1更光滑,所以更容易计算;L1假设模型参数服从拉普拉斯分布,L1正则化具备产生稀疏解的功能,从而具备Feature Selection的能力。(由于spark 2.1.0中的线性回归方法已经忽略了,就没去验证L1和L2对模型的影响)

    

SparkMLlib学习之线性回归的更多相关文章

  1. SparkMLlib学习分类算法之逻辑回归算法

    SparkMLlib学习分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693 ...

  2. 【深度学习】线性回归(Linear Regression)——原理、均方损失、小批量随机梯度下降

    1. 线性回归 回归(regression)问题指一类为一个或多个自变量与因变量之间关系建模的方法,通常用来表示输入和输出之间的关系. 机器学习领域中多数问题都与预测相关,当我们想预测一个数值时,就会 ...

  3. [Machine Learning]学习笔记-线性回归

    模型 假定有i组输入输出数据.输入变量可以用\(x^i\)表示,输出变量可以用\(y^i\)表示,一对\(\{x^i,y^i\}\)名为训练样本(training example),它们的集合则名为训 ...

  4. 莫烦python教程学习笔记——线性回归模型的属性

    #调用查看线性回归的几个属性 # Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg # ...

  5. keras学习简单线性回归【1】

    转自:https://morvanzhou.github.io/tutorials/machine-learning/keras/2-1-regressor/ 总的代码的过程就是: 1.导入模块+创建 ...

  6. Stanford机器学习笔记-6. 学习模型的评估和选择

    6. 学习模型的评估与选择 Content 6. 学习模型的评估与选择 6.1 如何调试学习算法 6.2 评估假设函数(Evaluating a hypothesis) 6.3 模型选择与训练/验证/ ...

  7. SparkMLlib分类算法之支持向量机

    SparkMLlib分类算法之支持向量机 (一),概念 支持向量机(support vector machine)是一种分类算法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最 ...

  8. 线性回归、Logistic回归、Softmax回归

    线性回归(Linear Regression) 什么是回归? 给定一些数据,{(x1,y1),(x2,y2)…(xn,yn) },x的值来预测y的值,通常地,y的值是连续的就是回归问题,y的值是离散的 ...

  9. 机器学习之路:python线性回归分类器 LogisticRegression SGDClassifier 进行良恶性肿瘤分类预测

    使用python3 学习了线性回归的api 分别使用逻辑斯蒂回归  和   随机参数估计回归 对良恶性肿瘤进行预测 我把数据集下载到了本地,可以来我的git下载源代码和数据集:https://gith ...

随机推荐

  1. 应用程序写Xml文档

    主要用到CreateElement.CreateTextNode.CreateComment.AppendChild.InsertAfter方法 代码如下: XmlDocument document ...

  2. 基于MVC和Bootstrap的权限框架解决方案 二.添加增删改查按钮

    上一期我们已经搭建了框架并且加入了列表的显示, 本期我们来加入增删改查按钮 整体效果如下 HTML部分,在HTML中找到中意的按钮按查看元素,复制HTML代码放入工程中 <a class=&qu ...

  3. c++标准库容器【转】

    C++最原始的容器之一是数组.数组的特点有: 1.大小固定 2.单独存在的数组建立在栈上,作为对象成员存在的数组建立在堆上还是栈上则要看作为宿主对象是被建立在堆上还是栈上.栈空间是有限的,所以如果数组 ...

  4. struts2 之 struts2数据校验

    1. 数据校验一般分为2类:前端的校验(js校验),后端的校验(java代码):实际开发中大部分情况下都是采用js校验.在对数据安全要求较高的情况下可能会采用后端验证. 2.  Struts2提供了后 ...

  5. 傻瓜式使用AutoFac

    定义一个接口: using System; using System.Collections.Generic; using System.Linq; using System.Web; namespa ...

  6. Aggregate累加器

    今天看东西的时候看见这么个扩展方法Aggregate(累加器)很是陌生,于是乎查了查,随手记录一下.直接看一个最简答的版本,其他版本基本没什么区别,需要的时候可看一下 public static TS ...

  7. Linux - 进程间通信 - 信号量

    一.概念 简单来讲,信号量是一个用来描述临界资源的资源个数的计数器. 信号量的本质是一种数据操作锁,它本身不具有数据交换的功能,而是通过控制其他的通信资源(文件.外部设备等)来实现进程间通信, 他本身 ...

  8. python与opencv的结合之人脸识别值

    首先还是要感谢http://www.jb51.net/article/67392.htm这位大神的无私奉献,开源的代码,让我省去了很多事,但是就光系统环境的配置就花去了我将近一个星期的时间,真是不容易 ...

  9. 业务订单号生成算法,每秒50W左右,不同机器保证不重复,包含日期可读性好

    参考snowflace算法,基本思路: 序列12位(更格式化的输出后,性能损耗导致每毫秒生成不了这么多,所以可以考虑减少这里的位,不过留着也并无影响) 机器位10位 毫秒为左移 22位 上述几个做或运 ...

  10. JS 部分常见循环、分支、嵌套练习

    图形题思路:1.确定图形一共几行,即为外层的循环次数2.确定每行有几种元素,代表有几个内层循环3.确定每种元素的个数,即为每个内层循环的次数   通常,找出每种元素个数,与行号的关系式,即为当前内层循 ...