link:http://www.usaco.org/index.php?page=dec17results

Problem A(Bronze)

这是一道非常简单的判断重叠面积的题目,但第一次提交仍会出错,实不应该

判断的关键在于矩形A的上界要大于B的下界,且A的下界要小于B的上界,则包含了相重叠的所有情况

同时,在数据范围较小时,也可使用染色法

#include <bits/stdc++.h>

using namespace std;
typedef long long ll; int xx[],xy[],yx[],yy[]; ll cal(int n,int m)
{
ll ret=(xy[n]-xx[n])*(yy[n]-yx[n]);
if(xx[m]<=xy[n] && xy[m]>=xx[n] && yx[m]<=yy[n] && yy[m]>=yx[n]) //关键判断句
{
ll t1=min(xy[n],xy[m])-max(xx[n],xx[m]);
ll t2=min(yy[n],yy[m])-max(yx[n],yx[m]);
ret-=t1*t2;
}
return ret;
} int main()
{
for(int i=;i<;i++)
cin >> xx[i] >> yx[i] >> xy[i] >> yy[i]; ll res=cal(,);res+=cal(,);
cout << res; return ;
}

Problem A

Problem B、C(Bronze)

#include <bits/stdc++.h>

using namespace std;

struct milk
{
int day,num,change;
}dat[];
int n,res[],cnt=; bool cmp(milk a,milk b)
{
return a.day<b.day;
} int main()
{
cin >> n;
for(int i=;i<=n;i++)
{
string s;
cin >> dat[i].day >> s >> dat[i].change;
if(s=="Bessie") dat[i].num=;
else if(s=="Elsie") dat[i].num=;
else dat[i].num=;
}
sort(dat+,dat+n+,cmp); int cur=;
res[]=res[]=res[]=;
for(int i=;i<=n;i++)
{
res[dat[i].num]+=dat[i].change;
int t1=max(res[],max(res[],res[])),t2=;
for(int j=;j<=;j++) if(res[j]==t1) t2+=(<<(j-)); if(t2!=cur) cur=t2,cnt++;
}
cout << cnt;
return ;
}

Problem B

#include <bits/stdc++.h>

using namespace std;
int n,a[],rev[],ini[],res[]; int main()
{
cin >> n;
for(int i=;i<=n;i++) cin >> a[i];
for(int i=;i<=n;i++) cin >> ini[i];
for(int i=;i<=n;i++) rev[a[i]]=i; for(int i=;i<=n;i++)
{
int t=i;
for(int j=;j<=;j++) t=rev[t];
res[t]=ini[i];
} for(int i=;i<=n;i++) cout << res[i] << endl;
return ;
}

Problem C

Problem A(Silver)

只要每次预处理最小值和前缀和即可

Tip:用double存储两int相除时一定要强制类型转换

#include <bits/stdc++.h>

using namespace std;
int n,a[],mmin[];
double ave[],mmax=; int main()
{
cin >> n;
for(int i=;i<=n;i++) cin >> a[i];
mmin[n]=a[n];mmax=;int sum=a[n];
for(int i=n-;i>=;i--)
{
mmin[i]=min(mmin[i+],a[i]);
sum+=a[i];ave[i]=double(sum-mmin[i])/(n-i);
//一定要强制转换为double
mmax=max(mmax,ave[i]);
} for(int i=;i<=n-;i++) if(ave[i]==mmax) cout << i- << endl; return ;
}

Problem A

 Problem B(Silver)

这是一道让我收获很大的题

题面:有n个起始为g的数,在m天里每天都会对其中一个数进行调整(加或减),而你要维护一个最大值列表,包括所有为当前最大值的数的编号。问此列表要改变的次数。

n<=1e9,m<=1e6

从数据范围可以看出,我们无法也不需要对每一个数进行维护,仅需对可能发生改变的1e6个数维护即可,那么为了建立每一个编号及其值之间的关系,可以用map来进行维护

那么接下来的重点就在于如何维护这些已经改变过的数的最大值,以及当前最大值的个数

一开始我并未使用数据结构,直接对最大值,次大值进行维护,但实际上当上一步的最大值进行减法时,需要再进行一次排序,因此不可行

实际上map中也是有自带的排序的,默认map<int,int,less<int> >,从而我们也可以使用greater<int>来使其降序排列,并用map.begin()来调取其最大的键所对应的值

同时,map本身内部的数据结构又是pair性质的,因此有了iterator:map.begin()后,可以使用map.begin()->first调取键,用map.begin()->second调取值

这样,我们就可以再用一个map来表示当前每种值所对应的数的个数

Tip:1、map.erase()操作不用输入iterator,只要输入键的编号即可

2、map本身和set一样,均自动排序,可用begin()调用最值

#include <bits/stdc++.h>

using namespace std;

struct milk
{
int day,num,change;
}dat[]; int n,g;
map<int,int> mp;
map<int,int,greater<int> > cnt; bool cmp(milk p,milk q)
{
return p.day<q.day;
} int main()
{
cin >> n >> g;
for(int i=;i<=n;i++)
{
cin >> dat[i].day >> dat[i].num >> dat[i].change;
if(!mp.count(dat[i].num)) mp[dat[i].num]=g;
} sort(dat+,dat+n+,cmp); int res=;cnt[g]=n;
for(int i=;i<=n;i++)
{
int last=mp[dat[i].num];mp[dat[i].num]+=dat[i].change;
int lmax=cnt.begin()->first,lcnt=cnt.begin()->second; //调用最大值的键值对 if(cnt[last]==) cnt.erase(last); //erase操作
else cnt[last]--;
cnt[mp[dat[i].num]]++; if(last==lmax)
{ //如果更改后最大值的编号不变且均只有一个最大值,则不处理
if(mp[dat[i].num]==cnt.begin()->first && cnt[mp[dat[i].num]]== && lcnt==) continue;
res++;
}
else if(mp[dat[i].num]>=lmax) res++;
}
cout << res; return ;
}

Problem B

Problem C(Silver)

题意:经过分析后,其实就是求所有在环中的点的总数

我看到此题后直接无脑用了tarjan,通过求强联通分量找到所有的环

但实际上,由于此题的特殊性:每个数仅有一个儿子,因此可以使用类似于topo sort的方法来剪去所有不成环的点

原理是当一个点的入度全部为不在环上的点组成时,则其也一定不在环上

1、首先将所有入度为0的点加入队列

2、每次删去队列中的一个点并将其所有出边删除

3、将操作后入度为0的点再加入队列

#include <bits/stdc++.h>

using namespace std;
const int MAXN=;
int n,dfn[MAXN],low[MAXN],dat[MAXN],time_point=,res=;
bool vis[MAXN],instack[MAXN]; stack<int> s; void tarjan(int node)
{
time_point++;
dfn[node]=low[node]=time_point;
vis[node]=true;
s.push(node);
instack[node]=true; if(!vis[dat[node]])
{
tarjan(dat[node]);
low[node]=min(low[node],low[dat[node]]);
}
else if(instack[dat[node]]) low[node]=min(low[node],low[dat[node]]); if(low[node]==dfn[node])
{
int temp,sum=;
do
{
temp=s.top();
res++;sum++;
s.pop();
instack[temp]=false;
}
while(temp!=node);
if(sum== && dat[temp]!=temp) res--;
}
} int main()
{
cin >> n;
for(int i=;i<=n;i++) cin >> dat[i]; for(int i=;i<=n;i++)
if(!vis[i]) tarjan(i); cout << res;
return ;
}

Solution A

#include <bits/stdc++.h>

using namespace std;
int in[],n;
bool res[];
vector<int> a[]; int main()
{
memset(res,true,sizeof(res));
int n;cin >> n;
for(int i=;i<=n;i++)
{
int x;cin >> x;
in[x]++;
a[i].push_back(x);
} queue<int> q;
for(int i=;i<=n;i++)
if(!in[i]) q.push(i),res[i]=false; while(!q.empty())
{
int x;x=q.front();q.pop();
for(int i=;i<a[x].size();i++)
{
in[a[x][i]]--;
if(!in[a[x][i]]) q.push(a[x][i]),res[a[x][i]]=false;
}
} int sum=;
for(int i=;i<=n;i++) sum+=res[i];
cout << sum; return ;
}

Solution B

因此可以发现拓扑排序和求环算法中的一些联系

[USACO] 2017 DEC Bronze&Silver的更多相关文章

  1. [USACO 2017 Dec Gold] Tutorial

    Link: USACO 2017 Dec Gold 传送门 A: 为了保证复杂度明显是从终结点往回退 结果一开始全在想优化建边$dfs$……其实可以不用建边直接$multiset$找可行边跑$bfs$ ...

  2. NC24083 [USACO 2017 Dec P]Greedy Gift Takers

    NC24083 [USACO 2017 Dec P]Greedy Gift Takers 题目 题目描述 Farmer John's nemesis, Farmer Nhoj, has N cows ...

  3. USACO翻译:USACO 2013 DEC Silver三题

    USACO 2013 DEC SILVER 一.题目概览 中文题目名称 挤奶调度 农场航线 贝西洗牌 英文题目名称 msched vacation shuffle 可执行文件名 msched vaca ...

  4. USACO翻译:USACO 2014 DEC Silver三题

    USACO 2014 DEC SILVER 一.题目概览 中文题目名称 回程 马拉松 奶牛慢跑 英文题目名称 piggyback marathon cowjog 可执行文件名 piggyback ma ...

  5. NC24866 [USACO 2009 Dec S]Music Notes

    NC24866 [USACO 2009 Dec S]Music Notes 题目 题目描述 FJ is going to teach his cows how to play a song. The ...

  6. 【BZOJ】【1717】【USACO 2006 Dec】Milk Patterns产奶的模式

    后缀数组 o(︶︿︶)o 唉傻逼了一下,忘了把后缀数组的字典范围改回20001,直接21交了上去,白白RE了两发……sigh 既然要找出现了K次的子串嘛,那当然要用后缀数组了>_>(因为我 ...

  7. USACO 2017 February Platinum

    第二次参加USACO 本来打算2016-2017全勤的 January的好像忘记打了 听群里有人讨论才想起来铂金组三题很有意思,都是两个排列的交叉对问题 我最后得分889/1000(真的菜) T1.W ...

  8. 【BZOJ】【1986】【USACO 2004 Dec】/【POJ】【2373】划区灌溉

    DP/单调队列优化 首先不考虑奶牛的喜欢区间,dp方程当然是比较显然的:$ f[i]=min(f[k])+1,i-2*b \leq k \leq i-2*a $  当然这里的$i$和$k$都是偶数啦~ ...

  9. Usaco 2010 Dec Gold Exercise(奶牛健美操)

    /*codevs 3279 二分+dfs贪心检验 堆版本 re一个 爆栈了*/ #include<cstdio> #include<queue> #include<cst ...

随机推荐

  1. 【比赛】STSRM 09

    第一题 题意:n个点,每个点坐标pi属性ai,从右往左将遇到的点向左ai范围内的点消除,后继续扫描. 现可以在扫描开始前提前消除从右往左任意点,问最少消除数(提前+扫描). n,pi,ai<=1 ...

  2. 大聊Python----IO口多路复用

    什么是IO 多路复用呢? 我一个SocketServer有500个链接连过来了,我想让500个链接都是并发的,每一个链接都需要操作IO,但是单线程下IO都是串行的,我实现多路的,看起来像是并发的效果, ...

  3. vue-cli proxyTable中跨域中pathRewrite 怎么用

    问:proxyTable 里面的pathRewrite里面的‘^/iclient’:'' 什么意思? 答:用代理, 首先你得有一个标识, 告诉他你这个连接要用代理. 不然的话, 可能你的 html, ...

  4. 顺序图(Sequence Diagram)

    顺序图(Sequence Diagram): 是一种强调对象间消息传递次序的交互图,又称为时序图或序列图.描述了在一个用例或操作的执行过程中对象如何通过消息相互交互,说明了消息如何在对象之间被发送和接 ...

  5. 类图(Class Diagram)

    类图(Class Diagram): 类(Class)封装了数据和行为,是面向对象的重要组成部分,它是具有相同属性.操作.关系的对象集合的总称. 类一般由三部分组成: 类名(Class):每个类都必须 ...

  6. msf web脚本反弹shell

    msf > msfpayload php/reverse_php LHOST=x.x.x.x LPORT=2333 R > re.php msf > use multi/handle ...

  7. arping详解

    arping干嘛用的? arping主要干的活就是查看ip的MAC地址及IP占用的问题. 参数 -0:指定源地址为0.0.0.0,这个一般是在我们刚刚安装好系统,电脑还没配置好IP的时候 -a:Aud ...

  8. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...

  9. python爬虫面试总结

    1.爬虫有哪些模块? 答: URL管理模块:维护已经爬取的URL集合和未爬取的URL集合,并提供获取新URL链接的接口 HTML下载模块:从URL管理器中获取未爬取的URL链接并下载HTML网页 HT ...

  10. Atom:优雅迷人的编辑神器

    对于热爱markdown写作的人来说,Atom同样是一款拥有无穷魅力的写作软件.我不怕它无法满足你的需求,就怕你不给一个机会了解它,那么,这将是一场遗憾的错过. 大学的时候,坊间对那些编程高手有一个令 ...