「CodePlus 2017 12 月赛」白金元首与独舞
description
data range
\]
solution
矩阵树定理
求无向图的生成树个数
度数矩阵-邻接矩阵
去掉一行一列求行列式
为了保证精度可以辗转相除
这里是模意义下的
const int mod=998244353;
int a[305][305];
il int gauss(int n){
RG int ans=1;
for(RG int i=2;i<=n;i++){
for(RG int j=i+1;j<=n;j++)
while(a[j][i]){
RG int t=a[i][i]/a[j][i];
for(RG int k=i;k<=n;k++)dec(a[i][k],1ll*t*a[j][k]%mod);
swap(a[i],a[j]);if(ans)ans=mod-ans;
}
ans=1ll*ans*a[i][i]%mod;
}
if(ans<0)ans+=mod;return ans;
}
有向图的外向(父亲指向儿子)生成树个数
对于每条边\((u,v)\),\(a[v][v]++,a[u][v]--\)(把度数看成入度)
然后直接求行列式即可
这题的解法
首先判掉无解
然后我们发现题目中每个空格方向的选择决定了空格之间的到达关系
于是这道题目变成了一个求内向生成树个数的题
套上矩阵树定理即可
code
#include<bits/stdc++.h>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cstring>
#include<complex>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<ctime>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define FILE "a"
#define mp make_pair
#define pb push_back
#define RG register
#define il inline
using namespace std;
typedef unsigned long long ull;
typedef vector<int>VI;
typedef long long ll;
typedef double dd;
const dd eps=1e-10;
const int mod=1e9+7;
const int N=2000010;
const dd pi=acos(-1);
const int inf=2147483645;
const ll INF=1e18+1;
const ll P=100000;
il ll read(){
RG ll data=0,w=1;RG char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch<='9'&&ch>='0')data=data*10+ch-48,ch=getchar();
return data*w;
}
il void file(){
srand(time(NULL)+rand());
freopen(FILE".in","r",stdin);
freopen(FILE".out","w",stdout);
}
int n,m,p[305][305],kx[305],ky[305];
int id[305][305],tag[305][305],t[100010],cnt,tot;
int a[305][305];
int dx[]={0,0,-1,1},dy[]={-1,1,0,0};
il void init(){
memset(id,0,sizeof(id));
memset(tag,0,sizeof(tag));
memset(t,0,sizeof(t));
memset(a,0,sizeof(a));
n=read();m=read();tot=1;cnt=0;
for(RG int i=1,c;i<=n;i++)
for(RG int j=1;j<=m;j++){
a[i][j]=tag[i][j]=id[i][j]=c=0;
while(c!='L'&&c!='R'&&c!='U'&&c!='D'&&c!='.')c=getchar();
if(c=='L')p[i][j]=0;if(c=='R')p[i][j]=1;
if(c=='U')p[i][j]=2;if(c=='D')p[i][j]=3;
if(c=='.'){p[i][j]=4;id[i][j]=++tot;kx[tot]=i;ky[tot]=j;}
}
}
il bool work(){
for(RG int i=1;i<=n;i++)
for(RG int j=1;j<=m;j++)
if(!id[i][j]&&!tag[i][j]){
RG int x=i,y=j,w=p[i][j];cnt++;
RG int xx=x+dx[w],yy=y+dy[w];
while(!id[x][y]&&!tag[x][y]&&x>0&&y>0&&x<=n&&y<=m){
tag[x][y]=cnt;x=xx;y=yy;w=p[x][y];xx=x+dx[w];yy=y+dy[w];
}
if(id[x][y])t[cnt]=id[x][y];
else if(x<1||y<1||x>n||y>m)t[cnt]=1;
else if(tag[x][y]==cnt)return 0;
else if(tag[x][y])t[cnt]=t[tag[x][y]];
}
return 1;
}
il void upd(int &a,int b){a+=b;if(a>=mod)a-=mod;}
il void dec(int &a,int b){if(b)upd(a,mod-b);}
il int gauss(int n){
RG int ans=1;
for(RG int i=2;i<=n;i++){
for(RG int j=i+1;j<=n;j++)
while(a[j][i]){
RG int t=a[i][i]/a[j][i];
for(RG int k=i;k<=n;k++)dec(a[i][k],1ll*t*a[j][k]%mod);
swap(a[i],a[j]);if(ans)ans=mod-ans;
}
ans=1ll*ans*a[i][i]%mod;
}
if(ans<0)ans+=mod;return ans;
}
il int solve(){
for(RG int i=2;i<=tot;i++)
for(RG int w=0;w<=3;w++){
RG int xx=kx[i]+dx[w],yy=ky[i]+dy[w];
RG int u=t[tag[xx][yy]],v=i;
if(id[xx][yy])u=id[xx][yy];
if(xx<1||yy<1||xx>n||yy>m)u=1;
if(u==v||!u)continue;
a[v][v]++;if(!a[u][v])a[u][v]=mod;a[u][v]--;
}
return gauss(tot);
}
int main()
{
RG int T=read();
while(T--){
init();
if(!work()){puts("0");continue;}
else printf("%d\n",solve());
}
return 0;
}
「CodePlus 2017 12 月赛」白金元首与独舞的更多相关文章
- [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞
[LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞 试题描述 到河北省 见斯大林 / 在月光下 你的背影 / 让我们一起跳舞吧 うそだよ~ 河北省怎么可能有 Stalin. ...
- 【LibreOJ】#6259. 「CodePlus 2017 12 月赛」白金元首与独舞
[题目]给定n行m列的矩阵,每个位置有一个指示方向(上下左右)或没有指示方向(任意选择),要求给未定格(没有指示方向的位置)确定方向,使得从任意一个开始走都可以都出矩阵,求方案数.n,m<=20 ...
- 走进矩阵树定理--「CodePlus 2017 12 月赛」白金元首与独舞
n,m<=200,n*m的方阵,有ULRD表示在这个格子时下一步要走到哪里,有一些待决策的格子用.表示,可以填ULRD任意一个,问有多少种填法使得从每个格子出发都能走出这个方阵,答案取模.保证未 ...
- loj6259「CodePlus 2017 12 月赛」白金元首与独舞
分析 我们将没连的点连向周围四个点 其余的按照给定的方向连 我们将所有连出去的位置统一连到0点上 再以0作为树根 于是就将问题转化为了有向图内向树计数 代码 #include<iostream& ...
- 「CodePlus 2017 12 月赛」火锅盛宴(模拟+树状数组)
1A,拿来练手的好题 用一个优先队列按煮熟时间从小到大排序,被煮熟了就弹出来. 用n个vector维护每种食物的煮熟时间,显然是有序的. 用树状数组维护每种煮熟食物的数量. 每次操作前把优先队列里煮熟 ...
- 「CodePlus 2017 12 月赛」可做题2(矩阵快速幂+exgcd+二分)
昨天这题死活调不出来结果是一个地方没取模,凉凉. 首先有个一眼就能看出来的规律... 斐波那契数列满足$a_1, a_2, a_1+a_2, a_1+2a_2, 2a_1+3a_2, 3a_1+5a_ ...
- 【LibreOJ】#6299. 「CodePlus 2018 3 月赛」白金元首与克劳德斯
[题意]给出坐标系中n个矩形,类型1的矩形每单位时间向x轴正方向移动1个单位,类型2的矩形向y轴正方向,初始矩形不重叠,一个点被矩形覆盖当且仅当它在矩形内部(不含边界),求$(-\infty ,+\i ...
- 【LIbreOJ】#6256. 「CodePlus 2017 12 月赛」可做题1
[题意]定义一个n阶正方形矩阵为“巧妙的”当且仅当:任意选择其中n个不同行列的数字之和相同. 给定n*m的矩阵,T次询问以(x,y)为左上角的k阶矩阵是否巧妙.n,m<=500,T<=10 ...
- 【LibreOJ】#6257. 「CodePlus 2017 12 月赛」可做题2
[题意]数列满足an=an-1+an-2,n>=3.现在a1=i,a2=[l,r],要求满足ak%p=m的整数a2有多少个.10^18. [算法]数论(扩欧)+矩阵快速幂 [题解]定义fib(i ...
随机推荐
- python之Queue
一.多进程的消息队列 “消息队列”是在消息的传输过程中保存消息的容器 消息队列最经典的用法就是消费者和生成者之间通过消息管道来传递消息,消费者和生成者是不通的进程.生产者往管道中写消息,消费者从管道中 ...
- atomic是绝对的线程安全么?为什么?如果不是,那应该如何实现?
atomic不是绝对的线程安全.atomic的本意是指属性的存取方法是线程安全的,并不保证整个对象是线程安全的 @property (atomic, assign) int intA; //线程A f ...
- 初识c++模板元编程
模板元编程(Template metaprogramming,简称TMP)是编译器内执行的程序,编译器读入template,编译输出的结果再与其他源码一起经过普通编译过程生成目标文件.通俗来说,普通运 ...
- hdu1052Tian Ji -- The Horse Racing(贪心,细节多)
Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (J ...
- linux部署maven
1.下载安装包 https://maven.apache.org/download.cgi 2.解压,并配置环境变量 vim /etc/profile export MAVEN_HOME=maven目 ...
- 使用httpClient获取请求cookie
package mytest; import java.util.ArrayList; import java.util.List; import org.apache.http.NameValueP ...
- 【WXS全局对象】Date
属性: 名称 说明 Date.parse( [dateString] ) 解析一个日期时间字符串,并返回 1970/1/1 午夜距离该日期时间的毫秒数. Date.UTC(year,month,day ...
- LeeCode第一次刷题(两数相加)
题目描述 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标. 你可以假设每种输入只会对应一个答案.但是,你不能重复利用这个数组 ...
- Intro to Probabilistic Model
概率论复习 概率(Probability) 频率学派(Frequentist):由大量试验得到的期望频率(致命缺陷:有些事情无法大量试验,例如一封邮件是垃圾邮件的概率,雷达探测的物体是一枚导弹的概率) ...
- Kali渗透测试工具-netcat
netcat被称作是网络工具当中的瑞士军刀,短小却功能强大 1.端口扫描 nc -nvz 目标IP 端口范围 eg: nc -nvz 192.168.1.105 1-65535 -n参数是不要使用DN ...