BZOJ-2875 随机数生成器 矩阵乘法快速幂+快速乘
题目没给全,吃X了。。。
2875: [Noi2012]随机数生成器
Time Limit: 10 Sec Memory Limit: 512 MB
Submit: 1479 Solved: 829
[Submit][Status][Discuss]
Description
栋栋最近迷上了随机算法,而随机数生成是随机算法的基础。栋栋准备使用线性同余法(Linear Congruential Method)来生成一个随机数列,这种方法需要设置四个非负整数参数m, a, c, X0,按照下面的公式生成出一系列随机数:
Xn+1 = (aXn + c) mod m
mod m 表示前面的数除以m的余数。从这个式子可以看出,这个序列的下一个数总是由上一个数生成的。
用种方法生成的序列具有随机序列的性质,因此这种方法被广泛地使用,包括常用的C++和Pascal 的产生随机数的库函数使用的也是这种方法。
知道这样产生的序列具有良好的随机性,不过心急的他仍然想尽快知道Xn 是多少。由于栋栋需要的随机数是0, 1,…, g − 1 之间的,他需要将Xn除以g。取余得到他想要的数,即Xn mod g,你只需要告诉栋栋他想要的数Xn mod g 是多少就可以了。
Input
包含6个用空格分割的m,a,c,X0,n和g,其中a,c,X0是非负整数,m,n,g是正整数。
Output
输出一个数,即Xn mod g
Sample Input
11 8 7 1 5 3
Sample Output
2
HINT
Source
题目大意:令Xi+1=(a*Xi+c)%m,求Xn%g
题解:
矩乘+快速幂 优化效率
构造矩阵:
矩乘转移即可
要用快速乘!!!不然会爆!!!
code:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
long long m,a,c,x0,n,g;
long long Mat[3][3];
long long z[10010];
long long cnt;
long long quick_mul(long long x,long long y)
{
long long t=0;cnt=0;
while (y)
{
z[++cnt]=y;
y>>=1;
}
for (int i=cnt; i; i--)
{
t=(t+t)%m;
if (z[i]&1) t=(t+x)%m;
}
return t;
}
void quick_pow(long long zs)
{
if (zs==1)
{
Mat[0][0]=1;Mat[1][0]=c%m;Mat[1][1]=a%m;
return;
}
quick_pow(zs>>1);
long long Ma[3][3]={0};
for (int i=0; i<=1; i++)
for (int j=0; j<=1; j++)
for (int k=0; k<=1; k++)
Ma[i][j]=(Ma[i][j]+quick_mul(Mat[i][k],Mat[k][j]))%m;
if (zs&1)
{
Ma[1][0]=(Ma[1][0]+quick_mul(Ma[1][1],c))%m;
Ma[1][1]=quick_mul(Ma[1][1],a);
}
for (int i=0; i<=1; i++)
for (int j=0; j<=1; j++)
Mat[i][j]=Ma[i][j];
}
int main()
{
scanf("%lld%lld%lld%lld%lld%lld",&m,&a,&c,&x0,&n,&g);
quick_pow(n);
x0=(quick_mul(x0,Mat[1][1])+Mat[1][0])%m%g;
printf("%lld\n",x0);
return 0;
}
BZOJ-2875 随机数生成器 矩阵乘法快速幂+快速乘的更多相关文章
- Bzoj 2875: [Noi2012]随机数生成器(矩阵乘法)
2875: [Noi2012]随机数生成器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2052 Solved: 1118 Description ...
- [vijos1725&bzoj2875]随机数生成器<矩阵乘法&快速幂&快速乘>
题目链接:https://vijos.org/p/1725 http://www.lydsy.com/JudgeOnline/problem.php?id=2875 这题是前几年的noi的题,时间比较 ...
- BZOJ 2875 随机数生成器
http://www.lydsy.com/JudgeOnline/problem.php?id=2875 题意:给出mod,a,c,g,x0,n,xn=(a*xn-1+c)%mod,求xn%g 求A* ...
- [NOI2012]随机数生成器 矩阵乘法
Code: #include<cstdio> #include<algorithm> #include<iostream> #include<cstring& ...
- BZOJ 2875: [Noi2012]随机数生成器( 矩阵快速幂 )
矩阵快速幂...+快速乘就OK了 ----------------------------------------------------------------------------------- ...
- 【模拟题(电子科大MaxKU)】解题报告【树形问题】【矩阵乘法】【快速幂】【数论】
目录: 1:一道简单题[树形问题](Bzoj 1827 奶牛大集会) 2:一道更简单题[矩阵乘法][快速幂] 3:最简单题[技巧] 话说这些题目的名字也是够了.... 题目: 1.一道简单题 时间1s ...
- HDU 4549 矩阵快速幂+快速幂+欧拉函数
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- 取模性质,快速幂,快速乘,gcd和最小公倍数
一.取模运算 取模(取余)运算法则: 1. (a+b)%p=(a%p+b%p)%p; 2.(a-b)%p=(a%p-b%p)%p; 3.(a*b)%p=(a%p * b%p)%p; 4.(a^b)%p ...
- bzoj2875随机数生成器——矩阵快速幂
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2875 矩阵快速幂,把x和c分开求,最后加上即可: 为防止爆long long,要用快速乘. ...
随机推荐
- 第2章 面向对象的设计原则(SOLID):6_开闭原则
6. 开闭原则(Open Closed Principle,OCP) 6.1 定义 (1)一个类应该对扩展开放,对修改关闭.要求通过扩展来实现变化,而且是在不修改己有的代码情况下进行扩展,也不必改动己 ...
- Unity4.6新UI系统初探(uGUI)
一.引言 Unity终于在即将到来的4.6版本内集成了所见即所得的UI解决方案(视频).事实上从近几个版本开始,Unity就在为这套系统做技术扩展,以保证最终能实现较理想的UI系统.本文试图通过初步的 ...
- C++学习之开发环境搭建篇(一)
由于C++是一门非跨平台语言,其开发的程序编译生成的可执行文件,只能在相应的操作系统中被执行,离开此系统环境将无法执行. 主要原因是不同的操作系统,可执行文件的结构不同,最为常见的操作系统是有:MAC ...
- ArrayList和Hashtable
public class Tools{ public string Name{get ;set;}} #region 0.1ArrayList集合 ////告诉内存,我要存储内容 //ArrayLis ...
- 16SpringMvc_在业务控制方法中写入User,Admin多个模型收集参数——引出问题
上面文章时普通的业务那个方法中收集一个实体类,这篇文章想收集两个实体类. 文本要做的是:在person.jsp页面上,有两个表单.分别是普通用户和管理员用户的表单(普通用户的表单和管理员用户的表单里面 ...
- 【转】【WPF】WPF 登录窗口关闭时打开主窗口
在WPF中设计登录窗口关闭时打开主窗口,自动生成的App.xaml不能满足要求, 1.把App.xaml的属性窗口中的生成操作设定为 无 2.添加Program类 static class Progr ...
- JS 模板引擎之JST模板
项目中有用到JST模板引擎,于是抽个时间出来,整理了下关于JST模板引擎的相关内容. 试想一个场景,当点击页面上列表的翻页按钮后,通过异步请求获得下一页的列表数据并在页面上显示出来.传统的JS做法是编 ...
- python数字图像处理(1):环境安装与配置
一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...
- Jsoup开发简单网站客户端之读取本地html文件
用jsoup解析网页,相比于那些返回api数据来说 肯定耗流量,加载慢,所以程序assts中预先放了一个最新的html文件,第一次进来不走网络,直接从本地取,以后会加上wifi离线功能. 首先离线网站 ...
- Arduino小车学习与研究
信安系统设计基础实践模块 Arduino小车学习与研究 ================== 陈都(20135328) 余佳源(20135321) 莫凡(20135225) ---------- 索引 ...