【题意】给定n个点的无向完全图,有n-1个公司各自分管一部分路,要求所有公司都有修路的生成树数。n<=17。

【算法】容斥原理+生成树计数(矩阵树定理)

【题解】每个生成树方案是一个公司有无修路的01排列,定义集合x为公司x有修路的方案集合,则题目要求集合交。

对于若干集合的集合并补集,即x个公司不修路的方案数,就是除去这x个公司的边的生成树数。

ans=Σ(-1)^k g(k),0<=k<=n-1。g(k)表示枚举k个公司不修的生成树数。

复杂度O(2^(n-1)*n^3)。

注意:

1.答案变成非负数。

2.公司边集最大N*N。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=,MOD=1e9+;
int a[maxn][maxn],b[maxn][maxn*maxn][],sz[maxn],n,ans;//
bool c[maxn];
void gcd(int a,int b,int &x,int &y){
if(!b){x=;y=;}
else{gcd(b,a%b,y,x);y-=x*(a/b);}
}
int inv(int a){int x,y;gcd(a,MOD,x,y);return (x%MOD+MOD)%MOD;}
int det(int n){
for(int i=;i<=n;i++)for(int j=;j<=n;j++)a[i][j]=(a[i][j]+MOD)%MOD;
bool y=;
for(int i=;i<=n;i++){
int r=i;
for(int j=i+;j<=n;j++)if(a[j][i]>a[r][i])r=j;
if(r!=i){y^=;for(int j=i;j<=n;j++)swap(a[r][j],a[i][j]);}
int v=inv(a[i][i]);
for(int j=i+;j<=n;j++){
for(int k=n;k>=i;k--){
a[j][k]=(a[j][k]-1ll*a[j][i]*v%MOD*a[i][k]%MOD+MOD)%MOD;
}
}
}
int as=y?MOD-:;
for(int i=;i<=n;i++)as=1ll*as*a[i][i]%MOD;
return as;
}
void insert(int u,int v){a[u][v]--;a[v][u]--;a[u][u]++;a[v][v]++;}
int solve(){
memset(a,,sizeof(a));
for(int i=;i<n;i++)if(!c[i]){//
for(int j=;j<=sz[i];j++)insert(b[i][j][],b[i][j][]);
}
return det(n-);
}
void dfs(int x,int y){
if(x==n){
ans=(ans+y*solve())%MOD;
}
else{
c[x]=;
dfs(x+,y);
c[x]=;
dfs(x+,-y);
}
}
int main(){
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%d",&sz[i]);
for(int j=;j<=sz[i];j++)scanf("%d%d",&b[i][j][],&b[i][j][]);
}
ans=;
dfs(,);
printf("%d",(ans+MOD)%MOD);//
return ;
}

【BZOJ】4596: [Shoi2016]黑暗前的幻想乡的更多相关文章

  1. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

  2. BZOJ 4596: [Shoi2016]黑暗前的幻想乡

    Sol 容斥原理+Matrix-Tree定理.容斥跟小星星那道题是一样的,然后...直接Matrix-Tree定理就可以了... 复杂度\(O(2^{n-1}n^3)\) PS:调了好久啊QAQ 明明 ...

  3. ●BZOJ 4596 [Shoi2016]黑暗前的幻想乡

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4596 题解: 容斥,矩阵树定理,矩阵行列式 先说说容斥:(一共有 N-1个公司) 令 f[i ...

  4. bzoj 4596: [Shoi2016]黑暗前的幻想乡【容斥原理+矩阵树定理】

    真是简单粗暴 把矩阵树定理的运算当成黑箱好了反正我不会 这样我们就可以在O(n^3)的时间内算出一个无向图的生成树个数了 然后题目要求每个工程队选一条路,这里可以考虑容斥原理:全选的方案数-不选工程队 ...

  5. BZOJ 4596: [Shoi2016]黑暗前的幻想乡(容斥+Matrix_Tree)

    传送门 解题思路 看到计数想容斥--\(from\) \(shadowice1984\)大爷.首先求出原图的生成树个数比较容易,直接上矩阵树定理,但这样会多算一点东西,会把\(n-2\)个公司的多算进 ...

  6. 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 324  Solved: 187 Description ...

  7. bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 464  Solved: 264[Submit][Sta ...

  8. bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)

    bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...

  9. [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)

    这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...

随机推荐

  1. 01_Java基础_第1天(Java概述、环境变量、注释、关键字、标识符、常量)_讲义

    今日内容介绍 1.Java开发环境搭建 2.HelloWorld案例 3.注释.关键字.标识符 4.数据(数据类型.常量) 01java语言概述 * A: java语言概述 * a: Java是sun ...

  2. Spark Transformations介绍

    背景 本文介绍是基于Spark 1.3源码 如何创建RDD? RDD可以从普通数组创建出来,也可以从文件系统或者HDFS中的文件创建出来. 举例:从普通数组创建RDD,里面包含了1到9这9个数字,它们 ...

  3. jQuery之回到顶部

    实现回到顶部的功能,根据学了元素滚动实现,温习知识点. 做之前先理清一下步骤和思路: 1.获得页面的滚动长度 var $page = $("html,body"); var dis ...

  4. 判断一个变量是不是json,以及如何将变量转换成json

    https://blog.csdn.net/A123638/article/details/52486975这里看到一个很好的方法 // 判断变量是不是jsonisJson(variable: any ...

  5. Redis 备份数据的两种方式

    既然是数据库,那就一定有数据备份方式了,而且 Redis 是内存形式的数据库,更需要数据备份了,要不然断电数据就全都丢失了. Redis 数据备份有两种方式: RDB(数据快照) AOF(记录操作日志 ...

  6. python3判断字典、列表、元组为空以及字典是否存在某个key的方法

    #!/usr/bin/python3 #False,0,'',[],{},()都可以视为假 m1=[] m2={} m3=() m4={"name":1,"age&quo ...

  7. 【bzoj5173】[Jsoi2014]矩形并 扫描线+二维树状数组区间修改区间查询

    题目描述 JYY有N个平面坐标系中的矩形.每一个矩形的底边都平行于X轴,侧边平行于Y轴.第i个矩形的左下角坐标为(Xi,Yi),底边长为Ai,侧边长为Bi.现在JYY打算从这N个矩形中,随机选出两个不 ...

  8. 【模考】2018.04.08 Connection

    Description 给定一张N个点M条边的连通无向图,问最少需要断开多少条边使得这张图不再连通. Input 第一行两个整数N,M含义如题所示. 接下来M行,每行两个正整数x,y,表示x和y之间有 ...

  9. 【BZOJ1014】火星人(Splay,哈希)

    [BZOJ1014]火星人(Splay,哈希) 题面 BZOJ 题解 要动态维护这个串,一脸的平衡树. 那么用\(Splay\)维护这个哈希值就好了. 每次计算答案的时候二分+Splay计算区间哈希值 ...

  10. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...