【题意】给定n个点的无向完全图,有n-1个公司各自分管一部分路,要求所有公司都有修路的生成树数。n<=17。

【算法】容斥原理+生成树计数(矩阵树定理)

【题解】每个生成树方案是一个公司有无修路的01排列,定义集合x为公司x有修路的方案集合,则题目要求集合交。

对于若干集合的集合并补集,即x个公司不修路的方案数,就是除去这x个公司的边的生成树数。

ans=Σ(-1)^k g(k),0<=k<=n-1。g(k)表示枚举k个公司不修的生成树数。

复杂度O(2^(n-1)*n^3)。

注意:

1.答案变成非负数。

2.公司边集最大N*N。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=,MOD=1e9+;
int a[maxn][maxn],b[maxn][maxn*maxn][],sz[maxn],n,ans;//
bool c[maxn];
void gcd(int a,int b,int &x,int &y){
if(!b){x=;y=;}
else{gcd(b,a%b,y,x);y-=x*(a/b);}
}
int inv(int a){int x,y;gcd(a,MOD,x,y);return (x%MOD+MOD)%MOD;}
int det(int n){
for(int i=;i<=n;i++)for(int j=;j<=n;j++)a[i][j]=(a[i][j]+MOD)%MOD;
bool y=;
for(int i=;i<=n;i++){
int r=i;
for(int j=i+;j<=n;j++)if(a[j][i]>a[r][i])r=j;
if(r!=i){y^=;for(int j=i;j<=n;j++)swap(a[r][j],a[i][j]);}
int v=inv(a[i][i]);
for(int j=i+;j<=n;j++){
for(int k=n;k>=i;k--){
a[j][k]=(a[j][k]-1ll*a[j][i]*v%MOD*a[i][k]%MOD+MOD)%MOD;
}
}
}
int as=y?MOD-:;
for(int i=;i<=n;i++)as=1ll*as*a[i][i]%MOD;
return as;
}
void insert(int u,int v){a[u][v]--;a[v][u]--;a[u][u]++;a[v][v]++;}
int solve(){
memset(a,,sizeof(a));
for(int i=;i<n;i++)if(!c[i]){//
for(int j=;j<=sz[i];j++)insert(b[i][j][],b[i][j][]);
}
return det(n-);
}
void dfs(int x,int y){
if(x==n){
ans=(ans+y*solve())%MOD;
}
else{
c[x]=;
dfs(x+,y);
c[x]=;
dfs(x+,-y);
}
}
int main(){
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%d",&sz[i]);
for(int j=;j<=sz[i];j++)scanf("%d%d",&b[i][j][],&b[i][j][]);
}
ans=;
dfs(,);
printf("%d",(ans+MOD)%MOD);//
return ;
}

【BZOJ】4596: [Shoi2016]黑暗前的幻想乡的更多相关文章

  1. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

  2. BZOJ 4596: [Shoi2016]黑暗前的幻想乡

    Sol 容斥原理+Matrix-Tree定理.容斥跟小星星那道题是一样的,然后...直接Matrix-Tree定理就可以了... 复杂度\(O(2^{n-1}n^3)\) PS:调了好久啊QAQ 明明 ...

  3. ●BZOJ 4596 [Shoi2016]黑暗前的幻想乡

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4596 题解: 容斥,矩阵树定理,矩阵行列式 先说说容斥:(一共有 N-1个公司) 令 f[i ...

  4. bzoj 4596: [Shoi2016]黑暗前的幻想乡【容斥原理+矩阵树定理】

    真是简单粗暴 把矩阵树定理的运算当成黑箱好了反正我不会 这样我们就可以在O(n^3)的时间内算出一个无向图的生成树个数了 然后题目要求每个工程队选一条路,这里可以考虑容斥原理:全选的方案数-不选工程队 ...

  5. BZOJ 4596: [Shoi2016]黑暗前的幻想乡(容斥+Matrix_Tree)

    传送门 解题思路 看到计数想容斥--\(from\) \(shadowice1984\)大爷.首先求出原图的生成树个数比较容易,直接上矩阵树定理,但这样会多算一点东西,会把\(n-2\)个公司的多算进 ...

  6. 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 324  Solved: 187 Description ...

  7. bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 464  Solved: 264[Submit][Sta ...

  8. bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)

    bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...

  9. [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)

    这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...

随机推荐

  1. PAT 甲级 1083 List Grades

    https://pintia.cn/problem-sets/994805342720868352/problems/994805383929905152 Given a list of N stud ...

  2. python3判断字典、列表、元组为空以及字典是否存在某个key的方法

    #!/usr/bin/python3 #False,0,'',[],{},()都可以视为假 m1=[] m2={} m3=() m4={"name":1,"age&quo ...

  3. 零拷贝Zero-Copy(NIO)

    介绍 Java 的zero copy多在网络应用程序中使用.Java的libaries在linux和unix中支持zero copy,关键的api是java.nio.channel.FileChann ...

  4. Hadoop RPC protocol description--转

    原文地址:https://spotify.github.io/snakebite/hadoop_rpc.html Snakebite currently implements the followin ...

  5. (一)Quartz2.2.1 简单例子

    转载至http://blog.csdn.net/a4307515/article/details/46985533 1.关键接口 Scheduler,任务调度的API:它可以用来启动或者终止任务等. ...

  6. WordPress忘记密码找回登录密码的四种行之有效的方法

    WordPress忘记密码找回登录密码的四种行之有效的方法 PS:20170214更新,感谢SuperDoge同学提供的方法,登入phpMyAdmin后,先从左边选自己的数据库,然后点上面的 SQL ...

  7. CF398B Painting The Wall 概率期望

    题意:有一个 $n * n$ 的网格,其中 $m$ 个格子上涂了色.每次随机选择一个格子涂色,允许重复涂,求让网格每一行每一列都至少有一个格子涂了色的操作次数期望.题解:,,这种一般都要倒推才行.设$ ...

  8. Unity3D for VR 学习(7): 360°全景照片

    在VR应用中,有一个相对简单的虚拟现实体验,那就是360°全景照片浏览器, 他可以使得手机拍照的”全景”照片,  得以”恢复”当时拍照的场景全貌,  这个创意的确比单纯的2d图片更有震撼力一些,故本文 ...

  9. msiexec安装参数详解

    原文链接地址:https://blog.csdn.net/wilson_guo/article/details/8151632 1 安装 /i表示安装,/x 表示卸载/f表示修复./l*v 表示输出详 ...

  10. Wifi密码破解实战

    原文链接地址:http://www.freebuf.com/articles/wireless/127261.html https://www.baidu.com/?tn=98012088_4_dg& ...