GMA Round 1 新年祝福
新年祝福
15个人聚集在一起,新年到来,他们每个人写下了一句新年祝福。大家把祝福收集起来,然后重新分回去。如果一个人拿到了自己写的祝福,他就会觉得很没有意思,因为得不到别人的祝福。要避免这种尴尬,一共会有多少种分配方案?
一句话题意:求满足下列条件的n的排列个数:对于任意i(1≤i≤n),排列的第i个数不是i。本题中n=15。
例如n=3时,满足条件的排列有2个:312和231
设答案数列为$a_n$,容易知道$a_0=1$,$a_1=0$,下面我们证明$a_n=(n-1)(a_{n-1}+a_{n-2})$,利用这个式子就可以很容易算出$a_{15}$
我们用这样一个角度看待n的一个排列:对于排列的第i个数$b_i$,我们连从i向$b_i$一条边,最后会得到一些环。例如2143对应两个环:1->2->1和3->4->3,长度均为2。31245对应3个环:1->3->2->1,4和5,长度分别为3、1、1。
一个符合条件的完全错位的排列不能有长度为1的环。要统计n时的所有合法排列,我们可以把它们分成两类:n所在环长度为2和n所在环大于2。第一类我们可以枚举与n在同一个环上的数字,一共有n-1种可能,此后剩下的n-2个数字可以独立考虑,方案数为$a_{n-2}$,所以是$(n-1)*a_{n-2}$。第二类在删除掉n这个数以后仍然是合法排列,可以在n-1的所有排列上任意位置插入一个n来得到,共有n-1种插入位置,所以是$(n-1)*a_{n-1}$。因此$a_{n}=(n-1)(a_{n-1}+a_{n-2})。$
定位:中等题、思维题
GMA Round 1 新年祝福的更多相关文章
- GMA Round 1 新年的复数
传送门 新年的复数 已知$\left\{\begin{matrix}A>B>0\\ AB=1\\ (A+B)(A-B)=2\sqrt{3}\end{matrix}\right.$ 求$(A ...
- GMA Round 1
学弟说我好久没更blog了. 因为自己最近其实没干什么. 所以来搬运一下GMA Round 1 的比赛内容吧,blog访问量.网站流量一举两得. 链接:https://enceladus.cf/con ...
- GMA Round 1 大吉大利,晚上吃鸡
传送门 大吉大利,晚上吃鸡 新年走亲访友能干点啥呢,咱开黑吃鸡吧. 这里有32个人,每个人都可能想玩或者不想玩,这样子一共有$2^{32}$种可能.而要开黑当然得4人4人组一队(四人模式),所以说如果 ...
- GMA Round 1 YGGDRASIL
传送门 YGGDRASIL 在YGGDRASIL世界,一年有213天. Demiurge推广种植了一种植物,姑且称之为“黄金果”,它第一期生长需要140天,此后第i期生长需要的天数$a_i$满足$a_ ...
- canvas动画效果新年祝福话语
html代码 <ul id="ul"></ul> css代码 * { margin:; padding:; } ul { list-style: none; ...
- GMA Round 1 数列与方程
传送门 数列与方程 首项为1,各项均大于0的数列{$a_n$}的前n项和$S_n$满足对于任意正整数n:$S_{n+1}^2-2*S_{n+1}*S_{n}-\sqrt{2}*S_n-1=0$,求$a ...
- GMA Round 1 离心率
传送门 离心率 P是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上一点,F1.F2为椭圆左右焦点.△PF1F2内心为M,直线PM与x轴相交于点N,NF1:NF2=4:3. ...
- GMA Round 1 波动函数
传送门 波动函数 f(x)是一个定义在R上的偶函数,f(x)=f(2-x),当$x\in[-1,1]$时,f(x)=cos(x),则函数$g(x)=f(x)-|cos(\pi x)|$,求g(x)在[ ...
- GMA Round 1 空降
传送门 空降 在一块100m*100m的平地上,10位战士从天而降!他们每人会均匀随机地落在这个地图上的一个点. 紧随其后,BOSS随机出现在这个地图上的某一点,然后它会奔向位于左上角的出口,而战士们 ...
随机推荐
- 清北合肥day2-day5
day2:215这一天的题目相对比较模板化t1:50看错了数据范围求n个点到给出的点哈夫曼距离的最小值我想到的是一种非常zz的做法我们二分答案,然后判断是否在这个距离内有点但是这样前缀和不是很好维护于 ...
- 【BZOJ2560】串珠子
题解: 跟n个点有标号的无向连通图个数几乎一模一样 直接上代码了 代码: #include <bits/stdc++.h> using namespace std; #define ll ...
- ORM框架之------Dapper,Net下无敌的ORM
一,介绍:Dapper是一款轻量级ORM工具.如果你在小的项目中,使用Entity Framework.NHibernate 来处理大数据访问及关系映射,未免有点杀鸡用牛刀.你又觉得ORM省时省力,这 ...
- 【Android】Tips for Android developer: “Conversion to Dalvik format failed: Unable to execute dex: null”
Androiddeveloper, I have met a strange problem when I want use a third party jar, it remained me tha ...
- Python Web开发问题收集(二)
- net core体系-web应用程序-4net core2.0大白话带你入门-8asp.net core 内置DI容器(DependencyInjection,控制翻转)的一点小理解
asp.net core 内置DI容器的一点小理解 DI容器本质上是一个工厂,负责提供向它请求的类型的实例. .net core内置了一个轻量级的DI容器,方便开发人员面向接口编程和依赖倒置(IO ...
- 爬虫3 requests基础之 乱码编码问题
import requests res = requests.get('http://www.quanshuwang.com') res.encoding = 'gbk' print(res.text ...
- 爬虫2 urllib3用法
import urllib3 import json # 实例化一个连接池 # http = urllib3.PoolManager() # res = http.request('get','htt ...
- Django 中bootstrap的引用
bootstrap的优越性 如果你有基本的HTML+CSS,bootstrap其实就是在标签中加入具体的class来实现样式.和原生态的HTML+CSS需要先在head标签的style写样式或者引入外 ...
- [ 高危 ]mt某站SQL注入
RANK 24 金币 24 等价RMB 240 与上一漏洞同源所以只有24 数据包: GET /check?clientId=64915 HTTP/1.1 Host: xxx.meituan. ...