【Python】keras使用LSTM拟合曲线
keras生成的网络结构如下图:

代码如下:
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import LSTM, Dense, Activation
from keras.utils.vis_utils import plot_model
import matplotlib.pyplot as plt
import numpy as np seq = 10
x = np.arange(0, 6 * np.pi, 0.01)
y = np.sin(x) + np.cos(x) * x fig = plt.figure(1)
plt.plot(y, 'r') train = np.array(y).astype(float)
scaler = MinMaxScaler()
train = scaler.fit_transform(train)
data = []
for i in range(len(train) - seq - 1):
data.append(train[i: i + seq + 1])
data = np.array(data).astype('float64') x = data[:, :-1]
y = data[:, -1]
split = int(data.shape[0] * 0.5) train_x = x[: split]
train_y = y[: split] test_x = x # [split:]
test_y = y # [split:] train_x = np.reshape(train_x, (train_x.shape[0], train_x.shape[1], 1))
test_x = np.reshape(test_x, (test_x.shape[0], test_x.shape[1], 1)) model = Sequential()
model.add(LSTM(input_dim=1, output_dim=6, return_sequences=True))
model.add(LSTM(100, return_sequences=False))
model.add(Dense(output_dim=1))
model.add(Activation('linear'))
model.summary() model.compile(loss='mse', optimizer='rmsprop') model.fit(train_x, train_y, batch_size=50, nb_epoch=100, validation_split=0.1)
predict_y = model.predict(test_x)
predict_y = np.reshape(predict_y, (predict_y.size,)) predict_y = scaler.inverse_transform([[i] for i in predict_y])
test_y = scaler.inverse_transform(test_y)
fig2 = plt.figure(2)
plt.plot(predict_y, 'g')
plt.plot(test_y, 'r')
plt.show()
plot_model(model, to_file='model.png', show_shapes=True, show_layer_names=False)
拟合结果:

【Python】keras使用LSTM拟合曲线的更多相关文章
- 基于 Keras 用 LSTM 网络做时间序列预测
目录 基于 Keras 用 LSTM 网络做时间序列预测 问题描述 长短记忆网络 LSTM 网络回归 LSTM 网络回归结合窗口法 基于时间步的 LSTM 网络回归 在批量训练之间保持 LSTM 的记 ...
- Python中利用LSTM模型进行时间序列预测分析
时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺 ...
- 吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:LSTM网络层详解及其应用
from keras.layers import LSTM model = Sequential() model.add(embedding_layer) model.add(LSTM(32)) #当 ...
- 吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:使用TensorFlow和Keras开发高级自然语言处理系统——LSTM网络原理以及使用LSTM实现人机问答系统
!mkdir '/content/gdrive/My Drive/conversation' ''' 将文本句子分解成单词,并构建词库 ''' path = '/content/gdrive/My D ...
- Kesci: Keras 实现 LSTM——时间序列预测
博主之前参与的一个科研项目是用 LSTM 结合 Attention 机制依据作物生长期内气象环境因素预测作物产量.本篇博客将介绍如何用 keras 深度学习的框架搭建 LSTM 模型对时间序列做预测. ...
- 手把手教你用 Keras 实现 LSTM 预测英语单词发音
1. 动机 我近期在研究一个 NLP 项目,根据项目的要求,需要能够通过设计算法和模型处理单词的音节 (Syllables),并对那些没有在词典中出现的单词找到其在词典中对应的押韵词(注:这类单词类似 ...
- Python Keras module 'keras.backend' has no attribute 'image_data_format'
问题: 当使用Keras运行示例程序mnist_cnn时,出现如下错误: 'keras.backend' has no attribute 'image_data_format' 程序路径https: ...
- Keras实现LSTM
一.先看一个Example 1.描述,输入为一个字母,输出为这个字母的下一个顺序字母 A->B B->C C->D 2.Code import numpy from keras.mo ...
- 使用keras的LSTM进行预测----实战练习
代码 import numpy as np from keras.models import Sequential from keras.layers import Dense from keras. ...
随机推荐
- ASP.NET Web API实现微信公众平台开发(三)自定义菜单
承接之前的流程,在完成服务器绑定和获取access_token之后,本文主要讲述如何实现微信自定义菜单. 官方示例效果 开始之前 .自定义菜单最多包括3个一级菜单,每个一级菜单最多包含5个二级菜单. ...
- vue脚手架构
我们是用Eclipse开发的,所以用vue开始时,要进行代理,不然访问不到服务器,所以就需要配置一下 dev context 里面写的是代理的接口,就是以这些接口开头的,如果没有就往里写一下,pro ...
- oracle新建用户并授权步凑
#首先创建表空间.存放路径.设置表空间大小 create tablespace tbs_ams datafile '+DATA/pdorcl1/datafile/ams1.dbf' size 1024 ...
- springboot属性注入转化为对象
第一种方式:用spel表达式解析 @Value("#{ T(com.alibaba.fastjson.JSON).parseObject('${train.purchase}')}" ...
- 使用webpack将es6 es7转换成es2015
第一步:安装模块化包 cnpm install --save-dev babel-core babel-loader babel-preset-es2015 babel-preset-react 第二 ...
- 经典面试题SALES TAXES思路分析和源码分享
题目: SALES TAXES Basic sales tax is applicable at a rate of 10% on all goods, except books, food, and ...
- 【ASP.NET MVC系列】浅谈ASP.NET 程序发布过程
ASP.NET MVC系列文章 [01]浅谈Google Chrome浏览器(理论篇) [02]浅谈Google Chrome浏览器(操作篇)(上) [03]浅谈Google Chrome浏览器(操作 ...
- FFmpeg封装格式处理3-复用例程
本文为作者原创,转载请注明出处:https://www.cnblogs.com/leisure_chn/p/10506653.html FFmpeg封装格式处理相关内容分为如下几篇文章: [1]. F ...
- 图像处理中kmeans聚类算法C++实现
Kmeans聚类算法是十分常用的聚类算法,给定聚类的数目N,Kmeans会自动在样本数据中寻找N个质心,从而将样本数据分为N个类别.下面简要介绍Kmeans聚类原理,并附上自己写的Kmeans聚类算法 ...
- Python和Java编程题(五)
题目:将一个正整数分解质因数.例如:输入90,打印出90=2*3*3*5. 程序分析:对n进行分解质因数,应先找到一个最小的质数k,然后按下述步骤完成: (1)如果这个质数恰等于n,则说明分解质因数的 ...