区间众数。分块,预处理任意两块间所有数的众数,和每块中所有数的出现次数的前缀和。查询时对不是整块的部分暴力,显然只有这里出现的数可能更新答案。于是可以优美地做到O(n√n)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 50010
#define BLOCK 250
int n,m,a[N],b[N],lastans=;
int block,tot,L[N],R[N],pos[N];
int cnt[N],f[BLOCK][BLOCK],sum[BLOCK][N];
int main()
{
freopen("bzoj2724.in","r",stdin);
freopen("bzoj2724.out","w",stdout);
n=read(),m=read();
for (int i=;i<=n;i++) b[i]=a[i]=read();
sort(b+,b+n+);
int t=unique(b+,b+n+)-b;
for (int i=;i<=n;i++) a[i]=lower_bound(b+,b+t,a[i])-b;
block=sqrt(n);tot=n/block+(n%block>);
for (int i=;i<=n/block;i++)
L[i]=(i-)*block+,R[i]=(i-)*block+block;
if (n/block<tot) L[tot]=n/block*block+,R[tot]=n;
for (int i=;i<=tot;i++)
{
memset(cnt,,sizeof(cnt));
int num=;
for (int j=i;j<=tot;j++)
{
for (int k=L[j];k<=R[j];k++)
{
cnt[a[k]]++;
if (cnt[a[k]]>cnt[num]||cnt[a[k]]==cnt[num]&&a[k]<num) num=a[k];
}
f[i][j]=num;
}
memcpy(sum[i],sum[i-],sizeof(sum[i]));
for (int j=L[i];j<=R[i];j++)
pos[j]=i,sum[i][a[j]]++;
}
memset(cnt,,sizeof(cnt));
while (m--)
{
int x=read(),y=read();
x=(x+lastans-)%n+,y=(y+lastans-)%n+;
if (x>y) swap(x,y);
int num=;
if (pos[x]==pos[y])
{
for (int i=x;i<=y;i++)
{
cnt[a[i]]++;
if (cnt[a[i]]>cnt[num]||cnt[a[i]]==cnt[num]&&a[i]<num) num=a[i];
}
for (int i=x;i<=y;i++) cnt[a[i]]--;
}
else
{
num=f[pos[x]+][pos[y]-];
for (int i=x;i<=R[pos[x]];i++)
{
cnt[a[i]]++;
if (cnt[a[i]]+sum[pos[y]-][a[i]]-sum[pos[x]][a[i]]>cnt[num]+sum[pos[y]-][num]-sum[pos[x]][num]
||cnt[a[i]]+sum[pos[y]-][a[i]]-sum[pos[x]][a[i]]==cnt[num]+sum[pos[y]-][num]-sum[pos[x]][num]&&a[i]<num)
num=a[i];
}
for (int i=L[pos[y]];i<=y;i++)
{
cnt[a[i]]++;
if (cnt[a[i]]+sum[pos[y]-][a[i]]-sum[pos[x]][a[i]]>cnt[num]+sum[pos[y]-][num]-sum[pos[x]][num]
||cnt[a[i]]+sum[pos[y]-][a[i]]-sum[pos[x]][a[i]]==cnt[num]+sum[pos[y]-][num]-sum[pos[x]][num]&&a[i]<num)
num=a[i];
}
for (int i=x;i<=R[pos[x]];i++) cnt[a[i]]--;
for (int i=L[pos[y]];i<=y;i++) cnt[a[i]]--;
}
lastans=b[num];
printf("%d\n",b[num]);
}
fclose(stdin);fclose(stdout);
return ;
}

BZOJ2724 [Violet]蒲公英(分块)的更多相关文章

  1. BZOJ2724 [Violet]蒲公英 分块

    题目描述 经典区间众数题目 然而是权限题,所以题目链接放Luogu的 题解 因为太菜所以只会$O(n*\sqrt{n}+n*\sqrt{n}*log(n))$的做法 就是那种要用二分的,并不会clj那 ...

  2. [Violet]蒲公英 分块

    发现写算法专题老是写不动,,,, 所以就先把我在luogu上的题解搬过来吧! 题目大意:查询区间众数,无修改,强制在线 乍一看是一道恐怖的题,仔细一看发现并没有那么难: 大致思路是这样的,首先我们要充 ...

  3. Luogu P4168 [Violet]蒲公英 分块

    这道题算是好好写了.写了三种方法. 有一个好像是$qwq$$N\sqrt(N)$的方法,,但是恳请大佬们帮我看看为什么这么慢$qwq$(后面的第三种) 注:$pos[i]$表示$i$属于第$pos[i ...

  4. [BZOJ2724][Violet 6]蒲公英

    [BZOJ2724][Violet 6]蒲公英 试题描述 输入 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 输出 输入示 ...

  5. 【BZOJ2724】蒲公英(分块)

    [BZOJ2724]蒲公英(分块) 题面 洛谷 谴责权限题的行为 题解 分块什么的都不会,根本就没写过几次. 复杂度根本不会分析,吓得我赶快来练练. 这题要求的是区间众数,显然没有什么很好的主席树之类 ...

  6. 洛谷 P4168 [Violet]蒲公英 解题报告

    P4168 [Violet]蒲公英 题目背景 亲爱的哥哥: 你在那个城市里面过得好吗? 我在家里面最近很开心呢.昨天晚上奶奶给我讲了那个叫「绝望」的大坏蛋的故事的说!它把人们的房子和田地搞坏,还有好多 ...

  7. 【BZOJ2724】[Violet 6]蒲公英 分块+二分

    [BZOJ2724][Violet 6]蒲公英 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n ...

  8. BZOJ2724 [Violet 6]蒲公英 分块

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2724.html 题目传送门 - BZOJ2724 题意 求区间最小众数,强制在线. $n$ 个数,$m ...

  9. 【分块】bzoj2724 [Violet 6]蒲公英

    分块,离散化,预处理出: ①前i块中x出现的次数(差分): ②第i块到第j块中的众数是谁,出现了多少次. 询问的时候,对于整块的部分直接获得答案:对于零散的部分,暴力统计每个数出现的次数,加上差分的结 ...

随机推荐

  1. MySQL(七)联结表

    一.联结表基础知识 1.关系表 把信息分解成多个表,一类数据一个表,各表通过某些常用值(即关系设计中的关系(relational))互相关联: 2.外键(foreign key):外键为某个表中的一列 ...

  2. ARM架构相关学习归纳总结

    ARM作为一个生态不仅提供了CPU Core,还提供了一系列相关的IP,比如GIC.MMU.AMBA.CoreLink.CoreSight.Mali等等. 其他还包括Debug工具.开发工具.IDE等 ...

  3. Image Restoration[Deep Image Prior]

    0.背景 这篇论文是2017年11月29号第一次提交到arxiv并紧接着30号就提交了V2版本的. 近些年DCNN模型在图像生成和修复上面表现很好,大部分人认为好的原因主要是由于网络基于大量的图片训练 ...

  4. MIPI接口资料汇总(精)

    一.介绍 1.MIPI联盟,即移动产业处理器接口(Mobile Industry Processor Interface 简称MIPI)联盟.MIPI(移动产业处理器接口)是MIPI联盟发起的为移动应 ...

  5. React-使用redux-immutable统一数据格式

    在header的reducer.js里把header变成immutable对象之后,在组件里获取focused属性就得这样获取: focused:state.header.get('focused') ...

  6. Asp.Net MVC页面显示后台处理进度问题

    这个问题的背景是,用户通过浏览器上传文件或Excel数据到系统中,页面需要时时显示后台处理进度,以增强用户的体验. 在GitHub上找到一个一个项目,基本实现了这个功能,具体效果如下图 代码实现过程大 ...

  7. 【javascript】详解javaScript的深拷贝

        前言: 最开始意识到深拷贝的重要性是在我使用redux的时候(react + redux), redux的机制要求在reducer中必须返回一个新的对象,而不能对原来的对象做改动,事实上,当时 ...

  8. hots团队项目终审报告

    一.团队成员: 徐钧鸿: 1994年1月19日生人,摩羯座最后一天.所以有摩羯的强迫症和水瓶古怪的性格 暂且算队长吧…… 高中的时候因为兴趣学了竞赛,于是就入坑了,于是就来北航学计算机了 兴趣面很广, ...

  9. Post Tuned Hashing,PTH

    [ACM 2018] Post Tuned Hashing_A New Approach to Indexing High-dimensional Data [paper] [code] Zhendo ...

  10. Fake NP CodeForces - 805A (思维)

    Tavak and Seyyed are good friends. Seyyed is very funny and he told Tavak to solve the following pro ...