区间众数。分块,预处理任意两块间所有数的众数,和每块中所有数的出现次数的前缀和。查询时对不是整块的部分暴力,显然只有这里出现的数可能更新答案。于是可以优美地做到O(n√n)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 50010
#define BLOCK 250
int n,m,a[N],b[N],lastans=;
int block,tot,L[N],R[N],pos[N];
int cnt[N],f[BLOCK][BLOCK],sum[BLOCK][N];
int main()
{
freopen("bzoj2724.in","r",stdin);
freopen("bzoj2724.out","w",stdout);
n=read(),m=read();
for (int i=;i<=n;i++) b[i]=a[i]=read();
sort(b+,b+n+);
int t=unique(b+,b+n+)-b;
for (int i=;i<=n;i++) a[i]=lower_bound(b+,b+t,a[i])-b;
block=sqrt(n);tot=n/block+(n%block>);
for (int i=;i<=n/block;i++)
L[i]=(i-)*block+,R[i]=(i-)*block+block;
if (n/block<tot) L[tot]=n/block*block+,R[tot]=n;
for (int i=;i<=tot;i++)
{
memset(cnt,,sizeof(cnt));
int num=;
for (int j=i;j<=tot;j++)
{
for (int k=L[j];k<=R[j];k++)
{
cnt[a[k]]++;
if (cnt[a[k]]>cnt[num]||cnt[a[k]]==cnt[num]&&a[k]<num) num=a[k];
}
f[i][j]=num;
}
memcpy(sum[i],sum[i-],sizeof(sum[i]));
for (int j=L[i];j<=R[i];j++)
pos[j]=i,sum[i][a[j]]++;
}
memset(cnt,,sizeof(cnt));
while (m--)
{
int x=read(),y=read();
x=(x+lastans-)%n+,y=(y+lastans-)%n+;
if (x>y) swap(x,y);
int num=;
if (pos[x]==pos[y])
{
for (int i=x;i<=y;i++)
{
cnt[a[i]]++;
if (cnt[a[i]]>cnt[num]||cnt[a[i]]==cnt[num]&&a[i]<num) num=a[i];
}
for (int i=x;i<=y;i++) cnt[a[i]]--;
}
else
{
num=f[pos[x]+][pos[y]-];
for (int i=x;i<=R[pos[x]];i++)
{
cnt[a[i]]++;
if (cnt[a[i]]+sum[pos[y]-][a[i]]-sum[pos[x]][a[i]]>cnt[num]+sum[pos[y]-][num]-sum[pos[x]][num]
||cnt[a[i]]+sum[pos[y]-][a[i]]-sum[pos[x]][a[i]]==cnt[num]+sum[pos[y]-][num]-sum[pos[x]][num]&&a[i]<num)
num=a[i];
}
for (int i=L[pos[y]];i<=y;i++)
{
cnt[a[i]]++;
if (cnt[a[i]]+sum[pos[y]-][a[i]]-sum[pos[x]][a[i]]>cnt[num]+sum[pos[y]-][num]-sum[pos[x]][num]
||cnt[a[i]]+sum[pos[y]-][a[i]]-sum[pos[x]][a[i]]==cnt[num]+sum[pos[y]-][num]-sum[pos[x]][num]&&a[i]<num)
num=a[i];
}
for (int i=x;i<=R[pos[x]];i++) cnt[a[i]]--;
for (int i=L[pos[y]];i<=y;i++) cnt[a[i]]--;
}
lastans=b[num];
printf("%d\n",b[num]);
}
fclose(stdin);fclose(stdout);
return ;
}

BZOJ2724 [Violet]蒲公英(分块)的更多相关文章

  1. BZOJ2724 [Violet]蒲公英 分块

    题目描述 经典区间众数题目 然而是权限题,所以题目链接放Luogu的 题解 因为太菜所以只会$O(n*\sqrt{n}+n*\sqrt{n}*log(n))$的做法 就是那种要用二分的,并不会clj那 ...

  2. [Violet]蒲公英 分块

    发现写算法专题老是写不动,,,, 所以就先把我在luogu上的题解搬过来吧! 题目大意:查询区间众数,无修改,强制在线 乍一看是一道恐怖的题,仔细一看发现并没有那么难: 大致思路是这样的,首先我们要充 ...

  3. Luogu P4168 [Violet]蒲公英 分块

    这道题算是好好写了.写了三种方法. 有一个好像是$qwq$$N\sqrt(N)$的方法,,但是恳请大佬们帮我看看为什么这么慢$qwq$(后面的第三种) 注:$pos[i]$表示$i$属于第$pos[i ...

  4. [BZOJ2724][Violet 6]蒲公英

    [BZOJ2724][Violet 6]蒲公英 试题描述 输入 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 输出 输入示 ...

  5. 【BZOJ2724】蒲公英(分块)

    [BZOJ2724]蒲公英(分块) 题面 洛谷 谴责权限题的行为 题解 分块什么的都不会,根本就没写过几次. 复杂度根本不会分析,吓得我赶快来练练. 这题要求的是区间众数,显然没有什么很好的主席树之类 ...

  6. 洛谷 P4168 [Violet]蒲公英 解题报告

    P4168 [Violet]蒲公英 题目背景 亲爱的哥哥: 你在那个城市里面过得好吗? 我在家里面最近很开心呢.昨天晚上奶奶给我讲了那个叫「绝望」的大坏蛋的故事的说!它把人们的房子和田地搞坏,还有好多 ...

  7. 【BZOJ2724】[Violet 6]蒲公英 分块+二分

    [BZOJ2724][Violet 6]蒲公英 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n ...

  8. BZOJ2724 [Violet 6]蒲公英 分块

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2724.html 题目传送门 - BZOJ2724 题意 求区间最小众数,强制在线. $n$ 个数,$m ...

  9. 【分块】bzoj2724 [Violet 6]蒲公英

    分块,离散化,预处理出: ①前i块中x出现的次数(差分): ②第i块到第j块中的众数是谁,出现了多少次. 询问的时候,对于整块的部分直接获得答案:对于零散的部分,暴力统计每个数出现的次数,加上差分的结 ...

随机推荐

  1. lesson 8:小程序

    程序源代码: //20163683 蔡金阳 信1605-3 import java.io.*; import java.util.Scanner; public class kaoshi { publ ...

  2. [拍摄]日本AVENIR 6-36mm老式变焦镜头拆解 型号SSL06036M

    老式监控摄像头的变焦镜头,做工不错,拆了分享一下 品牌:AVENIR型号:SSL06036M光圈:1:1.2产地:日本焦距:6-36mm 外观 图片:QQ截图20141104125759.jpg 图片 ...

  3. VS2015编写的MFC上位机,波特率可调,可动态显示曲线,可显示三维

    VS2015编写的MFC上位机,波特率可调,可动态显示曲线,可显示三维 2016年01月14日 11:40:28 博博有个大大大的Dream 阅读数:9375   版权声明:本文为博主原创文章,未经博 ...

  4. tornado学习篇(第二部)

    执行字符串表示的函数,并为该函数提供全局变量 本篇的内容从题目中就可以看出来,就是为之后剖析tornado模板做准备,     #!usr/bin/env python #coding:utf-8 n ...

  5. 截取字符串中最后一个中文词语(MS SQL)

    有朋友需求一个问题,就是处理一张表中某一字段,从这个字段中去截取内容中最后一个中文词语. ID SourceText Result 1 张达:U:1杨英苹:U:1,周忱:U:1,;苗桥:U:1,章玮: ...

  6. POJ3292&&2115

    这两道题还是比较简单的,没有什么难度 不过归在数论这个专题里我还是比较认同的,多少有些关系 3292 题目大意:给你一个范围n,让你求出这个范围内所有形式类似\(4k+1(k为正整数)\)的数中的H- ...

  7. JSP页面<%@ ...%>是什么意思?

    这表示是指令,主要用来提供整个JSP 网页相关的信息,并且用来设定JSP网页的相关属性,例如:网页的编码方式.语法.信息等.起始符号为: <%@终止符号为: %>目前有三种指令:page. ...

  8. java内存溢出的解决思路

    原文地址:https://www.cnblogs.com/200911/p/3965108.html 内存溢出是指应用系统中存在无法回收的内存或使用的内存过多,最终使得程序运行要用到的内存大于虚拟机能 ...

  9. python-编码-15

    ascii A : 00000010 8位 一个字节 unicode A : 00000000 00000001 00000010 00000100 32位 四个字节 中:00000000 00000 ...

  10. HDU 3537 Daizhenyang's Coin

    链接 [http://acm.hdu.edu.cn/showproblem.php?pid=3537] 题意 题意:已知一排硬币中有n个硬币正面朝上,输入正面朝上的硬币的位置ai.两人轮流操作, 每次 ...