BZOJ4377[POI2015]Kurs szybkiego czytania——数学思维题
题目描述
给定n,a,b,p,其中n,a互质。定义一个长度为n的01串c[0..n-1],其中c[i]==0当且仅当(ai+b) mod n < p。
给定一个长为m的小01串,求出小串在大串中出现了几次。
输入
第一行包含整数n,a,b,p,m(2<=n<=10^9,1<=p,a,b,m<n,1<=m<=10^6)。n和a互质。
第二行一个长度为m的01串。
输出
一个整数,表示小串在大串中出现了几次
样例输入
101
样例输出
提示

假设我们以长串中第i个作为匹配开头,(ai+b)%n=x,那么接下来长串中的字符的表达式就是x+a、x+2a、x+3a……。
如果以i为开头能匹配成功,那么假设短串是0110,就要满足0<=x<p;p<=x+a<n;p<=x+2a<n;0<=x+3a<p(不考虑取模)。
这样就能列出m个不等式,这m个不等式的交集就是以x为开头能成功匹配的x的取值范围。
因为n,a互质,所以不存在两个位置的表达式值相同,x取值范围的区间长度就是答案。
但取模之后就可能将每个不等式的一个取值范围变成开头和结尾的两个,不好求答案。
因此可以找到每个不等式不成立的取值范围,将这些范围取并集,他们的补集就是答案。
将所有不成立区间按左端点排个序,从左到右扫一遍即可。
注:代码中实际是以ai+b中的ai为未知变量,因为ai+b与ai的取值范围长度相同,所以不影响答案。
#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<stack>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
struct miku
{
int l;
int r;
}f[4000010];
int cnt;
int n,p,a,b,m;
char s[1000010];
int now;
int ans;
void add(int x,int y)
{
cnt++;
f[cnt].l=x;
f[cnt].r=y;
}
void updata(int a,int b,int c,int d)
{
if(a)
{
add(0,a);
}
if(b<c)
{
add(b,c);
}
if(d<n)
{
add(d,n);
}
}
bool cmp(miku a,miku b)
{
return a.l<b.l;
}
int main()
{
scanf("%d%d%d%d%d",&n,&a,&b,&p,&m);
scanf("%s",s);
for(int i=0;i<m;i++,b=(b+a)%n)
{
if(s[i]=='0')
{
updata(0,max(0,p-b),n-b,min(n,n+p-b));
}
else
{
updata(max(p-b,0),n-b,min(n,p+n-b),n);
}
}
for(int i=n-1,b=n-a;i>=n-m+1;b=(b-a+n)%n,i--)
{
add(b,b+1);
}
add(n,n+1);
sort(f+1,f+1+cnt,cmp);
for(int i=1;i<=cnt;i++)
{
if(f[i].l>now)
{
ans+=f[i].l-now;
}
if(f[i].r>now)
{
now=f[i].r;
}
}
printf("%d",ans);
}
BZOJ4377[POI2015]Kurs szybkiego czytania——数学思维题的更多相关文章
- BZOJ4377 : [POI2015]Kurs szybkiego czytania
因为$a$与$n$互质,所以对于$0$到$n-1$里每个$i$,$ai\bmod n$的值互不相同. 设匹配成功的起点为$i$,那么可以得到$3m$段$ai\bmod n$的值不能取的禁区,每段都是连 ...
- @bzoj - 4377@ [POI2015] Kurs szybkiego czytania
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定 n, a, b, p,其中 n, a 互质.定义一个长度为 ...
- PJ考试可能会用到的数学思维题选讲-自学教程-自学笔记
PJ考试可能会用到的数学思维题选讲 by Pleiades_Antares 是学弟学妹的讲义--然后一部分题目是我弄的一部分来源于洛谷用户@ 普及组的一些数学思维题,所以可能有点菜咯别怪我 OI中的数 ...
- BZOJ4377 Kurs szybkiego czytania \ Luogu 3589[POI2015]KUR - 数学思维题
Solution 我又双叒叕去看题解啦$QAQ$, 真的想不到鸭 输入 $a$ 和 $n$ 互质, 所以满足 $a \times i \ mod \ n$ $(0<=i<n)$ 肯定是不重 ...
- 51Nod 1003 阶乘后面0的数量(数学,思维题)
1003 阶乘后面0的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720 ...
- Gym 100801D Distribution in Metagonia (数学思维题)
题目:传送门.(需要下载PDF) 题意:t组数据,每组数据给定一个数ni(1 ≤ ni ≤ 10^18),把ni拆成尽可能多的数,要求每个数的素因子只包含2和3,且这些数不能被彼此整除,输出一共能拆成 ...
- EOJ2018.10 月赛(B 数学+思维题)
传送门:Problem B https://www.cnblogs.com/violet-acmer/p/9739115.html 题意: 找到最小的包含子序列a的序列s,并且序列s是 p -莫干山序 ...
- EOJ2018.10 月赛(A 数学+思维题)
传送门:Problem A https://www.cnblogs.com/violet-acmer/p/9739115.html 题意: 能否通过横着排或竖着排将 1x p 的小姐姐填满 n x m ...
- zoj 2818 Root of the Problem(数学思维题)
题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2818 题目描述: Given positive integer ...
随机推荐
- Selenium:WebDriver简介及元素定位
参考内容:官方API文档,下载链接:http://download.csdn.net/detail/kwgkwg001/4004500 虫师:<selenium2自动化测试实战-基于python ...
- P4208 [JSOI2008]最小生成树计数
现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)输出方案数对31011 ...
- linux驱动编写之进程独占驱动
一.描述 嵌入式开发系统中,有各种硬件资源,而有些硬件资源使用时候是需要进程独占的.也就是说,同一时刻只有一个进程允许使用这个硬件资源,其他的进程只能放弃执行或者挂起等待.在设计其对应驱动的时候,就需 ...
- React-使用Redux-thunk中间件实现ajax数据请求
把异步函数放在生命周期函数里写,生命周期函数会变得越来越复杂,组件会变得越来越大.Redux默认只处理同步,借助redux-thunk ,可以把异步请求放在actionCreators.js里管理,而 ...
- C#搭建CEF(CEFGLUE) 环境。
CEF(CEFGLUE)如果想做浏览器的,对这个应该不陌生了,相关资料执行百度了,现在写这文章这是按当前时间做一个环境搭建时所需要的资料的一个收集. 1:下载Xilium.CefGlue项目源码. 链 ...
- FreeCAD源码初步了解
FreeCAD简介 FreeCAD是基于OpenCASCADE的开源CAD/CAE软件,完全开源(GPL的LGPL许可证),官方源码地址,详情可参考维基百科,百度百科等等. 如果要编译FreeCAD, ...
- C_数据结构_递归A函数调用B函数
# include <stdio.h> int g(int); int f(int); int f(int n) { ) printf("haha\n"); else ...
- SCRUM 12.18
明天就是编译课设的第二次中期考核了,大家都感到有一些压力. 所以我们决定今天减少一些工作量. 工作任务分配依旧如往常 成员 任务 彭林江 落实API 郝倩 研究遍历美团数据方法 牛强 落实意见反馈功能 ...
- github个人作业
信息学院本科生课程设计 题目 文件加密和解密 课程名称 面向对象程序设计课程设计 课程编号 X031749 所在专业 计算机科学与技术 所在班级 计科高职13-3 ...
- ADC转换的分辨率
分辨率是指ADC能够分辨量化的最小信号的能力.分辨率用二进制位数表示.例如对一个10位的ADC,其所能分辨的最小量化电平为参考电平(满量程)的2的10次方分之一.也就是说分辨率越高,就能把满量程里的电 ...