CF1093F Vasya and Array DP
题面
题面
\(\Delta\)题面有点问题,应该是数列中没有长度大于等于\(len\)的连续数字才是合法的.
题解
设\(f[i][j]\)表示DP到\(i\)位,以\(j\)为结尾的方案数, \(sum[i]\)表示\(\sum_{j = 1}^{k}f[i][j]\), \(g[i][j]\)表示第\(i\)位为结尾,当前段全都是数字\(j\)的最长长度(不考虑\(len\)的限制,能延长就尽量延长,你可以理解为把\(1\)到\(i\)的\(-1\)全都改成\(j\),然后再看第\(i\)位以\(j\)为结尾的连续数字有多长)。
那么有:
0 \quad s_i \ne -1 \ and \ s_i \ne j \\
sum[i - 1] \quad g[i][j] < len \\
sum[i - 1] - (sum[i - len] - f[i - len][j]) \quad others
\end{cases}\]
第一种转移比较简单,解释下最后两种。
第二种:
因为\(g[i][j] < len\),所以在第\(i\)位,以\(j\)结尾时,不管前面是什么情况,肯定都合法,所以直接加上上一位总的方案就可以了
第三种:(以下所说的连续数字含义均为连续相同数字)
先明确一点:对于一段长度大于等于\(len\)的连续数字而言,我们只会在它的第一个不合法位置减去它的方案数,例如一个长为\(len + k\)的连续数字,我们只会在它的第\(len\)位减去它的方案数。
显然这样可以保证不重不漏,也就相当于其实我们每次减去的都是以某个固定位置开头的不合法连续数字的方案数,所以肯定不会有重复和遗漏的。
那为什么不每次减去以某个固定位置结尾的不合法连续数字的方案数呢?
因为我们是从前向后DP的,所以对于前面一个固定位置的一些信息,我们已经处理出来了,对于以某个固定位置结尾的不合法连续数字而言,当我们DP到这个结尾位置的时候,这个地方的值正我们需要计算的,总不能自己调用自己吧。
再考虑计算:
首先\(sum[i - 1]\)是总的方案数,但是其中有一部分方案不合法,因为当前段长度大于等于\(len\).
因此我们再考虑如何计算不合法的方案。
根据我们的策略,对于一段长度大于等于\(len\)的连续数字,我们只会在它的第\(len\)位减去它的方案数。
也就是我们只能减去长度为\(len\)的连续数字
因此我们假定从第\(i\)位开始,向前\(len\)个都是\(j\).(注意此时\(g[i][j] >= len\),所以一定有方案可以使得从\(i\)向前\(len\)个都是\(j\))
那么因为已经不合法了,所以从第\(i - len\)位开始,往前走的就都可以任取,所以总方案数为\(sum[i - len]\).
但是我们只能统计长度为\(len\)的连续数字,所以第\(i - len\)位不能是\(j\),否则就会接在以前变成一段长度大于\(len\)的连续数字了。
因此我们还要减去以\(i - len\)为结尾的,结尾数字为\(j\)的方案数。
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define p 998244353
#define AC 101000
#define ac 110
int n, k, len, ans;
int s[AC], f[AC][ac], g[AC][ac], sum[AC];
inline int read()
{
int x = 0;char c = getchar();bool zz = false;
while(c > '9' || c < '0') {if(c == '-') zz = true; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return zz ? -x : x;
}
inline void up(int &a, int b) {a += b; if(a < 0) a += p; if(a >= p) a-= p;}
inline int ad(int a, int b) {a += b; if(a < 0) a += p; if(a >= p) a -= p; return a;}
inline int mul(int a, int b) {return 1LL * a * b % p;}
void pre()
{
n = read(), k = read(), len = read();
for(R i = 1; i <= n; i ++) s[i] = read();
}
void work()
{
sum[0] = 1;
for(R i = 1; i <= n; i ++)
{
for(R j = 1; j <= k; j ++)
{
if(s[i] != -1 && s[i] != j) continue;
g[i][j] = ad(g[i - 1][j], (s[i] == -1 || s[i] == j));
if(g[i][j] < len) f[i][j] = sum[i - 1];
else up(f[i][j], ad(ad(sum[i - 1], -sum[i - len]), f[i - len][j]));
up(sum[i], f[i][j]);
}
}
printf("%d\n", sum[n]);
}
int main()
{
freopen("in.in", "r", stdin);
pre();
work();
fclose(stdin);
return 0;
}
CF1093F Vasya and Array DP的更多相关文章
- Educational Codeforces Round 56 (Rated for Div. 2) F - Vasya and Array dp好题
F - Vasya and Array dp[ i ][ j ] 表示用了前 i 个数字并且最后一个数字是 j 的方案数. dp[ i ][ j ] = sumdp [i - 1 ][ j ], 这样 ...
- CF1093F Vasya and Array
题目链接:洛谷 以后还是要多打CF,不然就会错过这些很好的思维题了.我dp学得还是太烂,要多总结. 首先$len=1$就直接输出0. 我们考虑$dp[i][j]$表示前$i$个数的答案,而且第$i$个 ...
- CodeForces - 1093F:Vasya and Array (DP&计数)
题意:N,K,L,以及给定长度为N的序列,表示其对应的颜色,-1表示还没有涂色,现在让你去涂色,使得最后没有大于等于L的连续的同色的情况. 思路:我们用dp[i][j]表示第i个位置颜色为j的合法方案 ...
- HDU 5653 Bomber Man wants to bomb an Array. dp
Bomber Man wants to bomb an Array. 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5653 Description ...
- 江苏 徐州邀请赛 icpc B Array dp 滚动数组模板
题目 题目描述 JSZKC is the captain of the lala team. There are N girls in the lala team. And their height ...
- URAL 1353 Milliard Vasya's Function(DP)
题目链接 题意 : 让你找出1到10^9中和为s的数有多少个. 思路 : 自己没想出来,看的题解,学长的题解报告 题解报告 //URAL 1353 #include <iostream> ...
- Codeforces 57C Array dp暴力找到规律
主题链接:点击打开链接 的非增量程序首先,计算, 如果不增加的节目数量x, 非减少一些方案是x 答案就是 2*x - n 仅仅需求得x就可以. 能够先写个n3的dp,然后发现规律是 C(n-1, 2* ...
- ZOJ 3872 Beauty of Array DP 15年浙江省赛D题
也是一道比赛时候没有写出来的题目,队友想到了解法不过最后匆匆忙忙没有 A 掉 What a pity... 题意:定义Beauty数是一个序列里所有不相同的数的和,求一个序列所有字序列的Beauty和 ...
- 152. Maximum Product Subarray (Array; DP)
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
随机推荐
- Android:制作聊天气泡点9图
步骤一:选择res下的一张图片,右击选择“Create 9-Patch File” 步骤二:确定点9图的名字,只能修改.9.png之前的信息 步骤三:在同目录下会生成刚才创建的点9图,双击打开进行编辑 ...
- dotnet core在Task中使用依赖注入的Service/EFContext
C#:在Task中使用依赖注入的Service/EFContext dotnet core时代,依赖注入基本已经成为标配了,这就不多说了. 前几天在做某个功能的时候遇到在Task中使用EF DbCon ...
- Jmeter使用HTTP代理服务器录制脚本
使用Jmeter录制脚本通常使用Badboy工具录制或者Jmeter自带的HTTP代理服务器录制脚本,这里说一下使用HTTP代理服务器录制时遇到的问题. 1. Jmeter安装 下载得到Jmeter ...
- TPO-18 C1 Apply for a part-time job on campus
TPO-18 C1 Apply for a part-time job on campus 第 1 段 1.Listen to a conversation between a student and ...
- 多源最短路——Floyd算法
Floyd算法 问题的提出:已知一个有向网(或者无向网),对每一对定点vi!=vj,要求求出vi与vj之间的最短路径和最短路径的长度. 解决该问题有以下两种方法: (1)轮流以每一个定点为源点,重复执 ...
- 简评搜狗输入法(ios端)
首先说说为什么不使用iPhone自带的输入法呢,首先是词库不够丰富,好多简单的词语需要逐个字逐个字的选择,记忆功能不太好,其次是全键盘式的输入我不太习惯,还是九宫格的输入法比较简单,更方便快捷. 搜狗 ...
- MUI设置卡头卡位的形式进行切换
这是mui的官方帮助文档,一切问题都能在这里找到http://dev.dcloud.net.cn/mui/ui/解决方案. 下面是MUI官方对卡头卡尾的一些描述: 在mobile app开发过程中,经 ...
- 如何打开tensorboard观测训练过程
TensorBoard是TensorFlow下的一个可视化的工具,能够帮助研究者们可视化训练大规模神经网络过程中出现的复杂且不好理解的运算,展示训练过程中绘制的图像.网络结构等. 最近本人在学习这方面 ...
- ZY、
- Ribbon源码解析
SpringCloud中的Ribbon开源项目,提供了客户端的负载均衡算法.这篇文章,我们来介绍下他是如何实现的.为了方便理解,我们以客户端调用的流程来介绍,其中会穿插介绍相关源代码. 简单回顾下Ri ...