题目什么大家都清楚

题解

我们知道,三点确定一条抛物线,现在这条抛物线过原点,所以任意两只猪确定一条抛物线。通过运算的出对于两头猪(x1,y1),(x2,y2),他们所在抛物线a=(y1*x2-y2*x1)/(x1*x1*x2-x1*x2*x2),b=(y1*x2*x2-y2*x1*x1)/(x1*x2*x2-x1*x1*x2)

由于猪很少,我们可以枚举出所有的抛物线,以及确定每一条抛物线能击中的猪
怎么确定射中所有猪的最优解呢?
状压DP
我们将猪的存活状态用二进制表示。
例如有8只猪,00000000表示8只猪都存活,00010001表示第1只和第5只挂掉了
这样,以存活状态作为下标,建立一个f[n]表示状态n的最优解
我们将每条抛物线射中的猪也用二进制表示。
利用位运算,对于抛物线s,f[n|s]=min(f[n|s],f[n]+1);
f[(1<<n)-1]就是答案
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define LL long long int
using namespace std;
const double E=1e-9;
const int maxn=1000005,INF=2000000000,P=1000000007; inline int read(){
int out=0,flag=1;char c=getchar();
while(c<48||c>57) {if(c=='-') flag=-1;c=getchar();}
while(c>=48&&c<=57){out=out*10+c-48;c=getchar();}
return out*flag;
} struct node{
double x,y;
}p[20]; double a,b;
inline void cal(int i,int j){
a=(p[i].y*p[j].x-p[j].y*p[i].x)/(p[i].x*p[i].x*p[j].x-p[i].x*p[j].x*p[j].x);
b=(p[i].y*p[j].x*p[j].x-p[j].y*p[i].x*p[i].x)/(p[i].x*p[j].x*p[j].x-p[i].x*p[i].x*p[j].x);
} inline bool isok(int i){
return fabs(a*p[i].x*p[i].x+b*p[i].x-p[i].y)<E;
} int v[maxn],vi=0,f[maxn],n,m; int main(){
int T=read();
while(T--){
vi=0;fill(f,f+maxn,INF);
n=read();m=read();
for(int i=1;i<=n;i++) {scanf("%lf%lf",&p[i].x,&p[i].y);v[++vi]=1<<(i-1);}
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++){
cal(i,j);
if(a>=0||b<0) continue;
int s=0;
for(int k=1;k<=n;k++) if(isok(k)) s+=(1<<(k-1));
v[++vi]=s;
}
f[0]=0;
int End=(1<<n)-1;
for(int i=0;i<=End;i++)
for(int j=1;j<=vi;j++)
f[i|v[j]]=min(f[i|v[j]],f[i]+1);
printf("%d\n",f[End]);
}
return 0;
}

NOIP2016愤怒的小鸟 题解报告 【状压DP】的更多相关文章

  1. [NOIP2016]愤怒的小鸟 D2 T3 状压DP

    [NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...

  2. bzoj 2669 题解(状压dp+搜索+容斥原理)

    这题太难了...看了30篇题解才整明白到底咋回事... 核心思想:状压dp+搜索+容斥 首先我们分析一下,对于一个4*7的棋盘,低点的个数至多只有8个(可以数一数) 这样的话,我们可以进行一个状压,把 ...

  3. BZOJ 1087 题解【状压DP】

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3112  Solved: 1816[Submit][ ...

  4. [BZOJ1087][SCOI2005]互不侵犯King解题报告|状压DP

    在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 好像若干月前非常Naive地去写过DFS... ...

  5. noi省选 [九省联考2018]一双木棋题解(状压dp)

    比浙江简单多了........ 题目转送:https://www.luogu.org/problemnew/show/P4363 分析: 我们注意到n和m都很小,考虑一下状压dp. 显然,棋子摆成的形 ...

  6. 洛谷P2831 愤怒的小鸟——贪心?状压DP

    题目:https://www.luogu.org/problemnew/show/P2831 一开始想 n^3 贪心来着: 先按 x 排个序,那么第一个不就一定要打了么? 在枚举后面某一个,和它形成一 ...

  7. 【NOIP2017】宝藏 题解(状压DP)

    题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 nnn 个深埋在地下的宝藏屋, 也给出了这 nnn 个宝藏屋之间可供开发的m mm 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中 ...

  8. LibreOJ 6177 题解(状压DP)

    题面 传送门 分析 刚看到这道题时想的是跟最短哈密顿路类似的二进制状压DP,先用floyd处理距离 但是此题用二进制不够,应该用三进制 0,1,2分别表示未送,正在送,已送完 dp[s][i]表示当前 ...

  9. 【FZYZOJ】愚人节礼物 题解(状压DP)

    前言:麻麻我会写状压DP了! ---------------------------- 题目描述 愚人节到了!可爱的UOI小朋友要给孩子们送礼物(汗-原题不是可爱的打败图么= =..).在平面直角坐标 ...

随机推荐

  1. MES与ERP的区别(转)

    MES和ERP有很大的不同,主要体现在以下几个方面: 1.管理的目标不同 ERP的重点在于财务,也就是从财务的角度出发来对企业的资源进行计划,相关的模块也是以财务为核心的展开,最终的管理数据也是集中到 ...

  2. Cannot get connection for URL jdbc:oracle:thin:调用中无效参数

    这个报错明显是连接数据库的url没有写对,但是,我要说的是但是,同样的代码生产没有问题,而测试环境报错了.最终哥找到那个错误,jdbc连接数据库时,有ResultSet,PreparedStateme ...

  3. hdu2061 Treasure the new start, freshmen!(暴力简单题)

    Treasure the new start, freshmen! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/3276 ...

  4. Jmeter接口测试(三)接口测试实践

    Jmeter 脚本编写一般分五个步骤: 1. 添加线程组 2. 添加 http 请求 3. 在 http 请求中写入接入 url.路径.请求方式和参数 4. 添加查看结果树 5. 调用接口.查看返回值 ...

  5. 二维DCT变换

    DCT(Discrete Consine Transform),又叫离散余弦变换,它的第二种类型,经常用于信号和图像数据的压缩.经过DCT变换后的数据能量非常集中,一般只有左上角的数值是非零的,也就是 ...

  6. Python Pygame (4) 图像的变换

    Pygame中的transform模块可以使得你能够对图像(也就是Surface对象)做各种动作,列如左右上下翻转,按角度转动,放大缩小......,并返回Surface对象.这里列举了transfo ...

  7. Thunder团队第七周 - Scrum会议6

    Scrum会议6 小组名称:Thunder 项目名称:i阅app Scrum Master:苗威 工作照片: 宋雨在照相,所以不在相片中. 参会成员: 王航:http://www.cnblogs.co ...

  8. oracle数据库 expdp/impdp 和 exp/imp

    --EXPDP导出,需要系统用户权限,一般不使用--sqlplus--1.创建dmp导出逻辑目录 create directory 目录名 as '目录路径' create directory exp ...

  9. 【每日scrum】NO.9

    (1)这是我们冲刺的最后一天,晚上我们的团队进行了收尾工作:第一阶段的任务基本完成,软件主要实现了校园景点照片以及对应的介绍,查询最短路径,查询涉及相关景点的查询,查询全部路径,基本界面的设计,导航功 ...

  10. 软工 · 第十一次作业 - Alpha 事后诸葛亮(团队)

    软工 · 第十一次作业 - Alpha 事后诸葛亮(团队) 组长本次作业链接 现代软件工程 项目Postmortem 设想和目标 1.我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场 ...