首先按数据值排序,那么连续一段区间的dfs序一定也是连续的。

  将权值离散化,设f[i][j][k]为i到j区间内所有点的权值都>=k的最小代价,转移时枚举根考虑是否修改权值即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 75
int n,m,b[N],f[N][N][N],sum[N];
struct data
{
int x,y,z;
bool operator <(const data&a) const
{
return x<a.x;
}
}a[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj1564.in","r",stdin);
freopen("bzoj1564.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++) a[i].x=read();
for (int i=;i<=n;i++) b[i]=a[i].y=read();
for (int i=;i<=n;i++) a[i].z=read();
sort(a+,a+n+);sort(b+,b+n+);
for (int i=;i<=n;i++) a[i].y=lower_bound(b+,b+n+,a[i].y)-b;
for (int i=;i<=n;i++) sum[i]=sum[i-]+a[i].z;
memset(f,,sizeof(f));
for (int i=;i<=n;i++)
{
for (int k=;k<=n;k++)
f[i][i-][k]=;
for (int k=;k<=a[i].y;k++)
f[i][i][k]=a[i].z;
for (int k=a[i].y+;k<=n;k++)
f[i][i][k]=a[i].z+m;
}
for (int k=;k<=n;k++) f[n+][n][k]=;
for (int k=;k<=n;k++)
for (int i=;i<=n-k+;i++)
{
int j=i+k-;
for (int root=i;root<=j;root++)
{
f[i][j][a[root].y]=min(f[i][j][a[root].y],f[i][root-][a[root].y]+f[root+][j][a[root].y]+sum[j]-sum[i-]);
for (int d=;d<=n;d++)
f[i][j][d]=min(f[i][j][d],f[i][root-][d]+f[root+][j][d]+sum[j]-sum[i-]+m);
}
for (int d=n;d>=;d--) f[i][j][d]=min(f[i][j][d],f[i][j][d+]);
}
cout<<f[][n][];
return ;
}

BZOJ1564 NOI2009二叉查找树(区间dp)的更多相关文章

  1. [BZOJ1564][NOI2009]二叉查找树 树形dp 区间dp

    1564: [NOI2009]二叉查找树 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 879  Solved: 612[Submit][Status] ...

  2. bzoj 1564 [NOI2009]二叉查找树 区间DP

    [NOI2009]二叉查找树 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 906  Solved: 630[Submit][Status][Discu ...

  3. 洛谷$P1864\ [NOI2009]$二叉查找树 区间$dp$

    正解:区间$dp$ 解题报告: 传送门$QwQ$ 首先根据二叉查找树的定义可知,数据确定了,这棵树的中序遍历就已经改变了,唯一能改变的就是通过改变权值从而改变结点的深度. 发现这里权值的值没有意义,所 ...

  4. [BZOJ1564][NOI2009]二叉查找树(区间DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1564 分析: 首先因为每个点的数据值不变,所以无论树的形态如何变,树的中序遍历肯定不变 ...

  5. bzoj1564: [NOI2009]二叉查找树

    dp. 首先这棵树是一个treap. 权值我们可以改成任意实数,所以权值只表示相互之间的大小关系,可以离散化. 树的中序遍历是肯定确定的. 用f[l][r][w]表示中序遍历为l到r,根的权值必须大于 ...

  6. BZOJ 1564: [NOI2009]二叉查找树( dp )

    树的中序遍历是唯一的. 按照数据值处理出中序遍历后, dp(l, r, v)表示[l, r]组成的树, 树的所有节点的权值≥v的最小代价(离散化权值). 枚举m为根(p表示访问频率): 修改m的权值 ...

  7. [洛谷P1864] NOI2009 二叉查找树

    问题描述 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左儿子结点的数据值大,而比它右儿子结点的数据值小. 另一方面,这棵查找树中每个结点都有一个权值,每个结点的权值都比它的 ...

  8. P1864 [NOI2009]二叉查找树

    链接P1864 [NOI2009]二叉查找树 这题还是蛮难的--是我菜. 题目描述中的一大堆其实就是在描述\(treap.\),考虑\(treap\)的一些性质: 首先不管怎么转,中序遍历是确定的,所 ...

  9. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

随机推荐

  1. 微服务(SOP)日志管理

    问题: 大型企业应用规模大,调试 / 解决问题由于在生产环境中不会有开发环境的调试工具,如果需要模拟还原当时的环境, 目前的解决办法是进行日志记录 日志记录的常用方式: 使用SpringAop进行切入 ...

  2. MySQL入门篇(二)之常见命令管理

    一.SQL结构化查询语言 SQL,英文全称Structured Query Language,中文意思是结构化查询语言.它是一种对关系数据库中的数据进行定义和操作的语言方法,是大多数关系数据库管理系统 ...

  3. apache-kylin-2.5.2-bin-cdh57与cdh-5.13.0集群整合运用

    1.下载kylin最新版apache-kylin-2.5.2-bin-cdh57: 2.解压配置环境变量: export BASE_PATH="/opt/cloudera/parcels/C ...

  4. js灵活处理日期(函实例)

    基础方法: var dd = new Date() dd.getFullYear() dd.getMonth() dd.getDate() dd.getDay() //获取星期几(0~6) dd.ge ...

  5. Yii2 Gridview 动态显示行或列和action列

    我们知道Yii中的GridView组件是非常好用的. 某些情况要动态显示某列,这时候就要用到visible属性 'propString' => ['attribute' => 'prope ...

  6. Supervisor4.0和python2.7的crit问题,导致python进程阻塞

    1.问题原因 Supervisor高版本在守护python2.7的服务时,会crit并报错并倒至进程阻塞(python进程存在,但不在运行)的问题,一般会和字符集有关系 <type 'excep ...

  7. 学习HTML 第一节.小试牛刀

    此贴并非教学,主要是自学笔记,所述内容只是些许个人学习心得的记录和备查积累,难以保证观点正确,也不一定能坚持完成. 如不幸到访,可能耽误您的时间,也难及时回复,贴主先此致歉.如偶有所得,相逢有缘,幸甚 ...

  8. Python中的内建函数(Built_in Funtions)

    前言 在Python官方文档的标准库章节中,第一节是简介,第二节就是Built_in Functions,可见内建函数是Python标准库的重要组成部分,而有很多内建函数我们平时却很少用到或根本就不知 ...

  9. 如何在DCS管理控制台将两个Redis主备实例建立全球灾备。

    华为云分布式缓存服务DCS,具有强大的功能,现在小编教大家如何在DCS管理控制台将两个Redis主备实例建立全球灾备. 建立全球灾备,会对主实例和备实例进行升级,实例进程会重启,连接会中断.同时备实例 ...

  10. Javascript 初学笔记

    变量作用域 自 ES2015 起,JS 引入let 和 const 关键词定义变量的块作用域(Block Scope). var 仅支持全局作用域(Global Scope)和函数作用域(Functi ...