首先按数据值排序,那么连续一段区间的dfs序一定也是连续的。

  将权值离散化,设f[i][j][k]为i到j区间内所有点的权值都>=k的最小代价,转移时枚举根考虑是否修改权值即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 75
int n,m,b[N],f[N][N][N],sum[N];
struct data
{
int x,y,z;
bool operator <(const data&a) const
{
return x<a.x;
}
}a[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj1564.in","r",stdin);
freopen("bzoj1564.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++) a[i].x=read();
for (int i=;i<=n;i++) b[i]=a[i].y=read();
for (int i=;i<=n;i++) a[i].z=read();
sort(a+,a+n+);sort(b+,b+n+);
for (int i=;i<=n;i++) a[i].y=lower_bound(b+,b+n+,a[i].y)-b;
for (int i=;i<=n;i++) sum[i]=sum[i-]+a[i].z;
memset(f,,sizeof(f));
for (int i=;i<=n;i++)
{
for (int k=;k<=n;k++)
f[i][i-][k]=;
for (int k=;k<=a[i].y;k++)
f[i][i][k]=a[i].z;
for (int k=a[i].y+;k<=n;k++)
f[i][i][k]=a[i].z+m;
}
for (int k=;k<=n;k++) f[n+][n][k]=;
for (int k=;k<=n;k++)
for (int i=;i<=n-k+;i++)
{
int j=i+k-;
for (int root=i;root<=j;root++)
{
f[i][j][a[root].y]=min(f[i][j][a[root].y],f[i][root-][a[root].y]+f[root+][j][a[root].y]+sum[j]-sum[i-]);
for (int d=;d<=n;d++)
f[i][j][d]=min(f[i][j][d],f[i][root-][d]+f[root+][j][d]+sum[j]-sum[i-]+m);
}
for (int d=n;d>=;d--) f[i][j][d]=min(f[i][j][d],f[i][j][d+]);
}
cout<<f[][n][];
return ;
}

BZOJ1564 NOI2009二叉查找树(区间dp)的更多相关文章

  1. [BZOJ1564][NOI2009]二叉查找树 树形dp 区间dp

    1564: [NOI2009]二叉查找树 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 879  Solved: 612[Submit][Status] ...

  2. bzoj 1564 [NOI2009]二叉查找树 区间DP

    [NOI2009]二叉查找树 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 906  Solved: 630[Submit][Status][Discu ...

  3. 洛谷$P1864\ [NOI2009]$二叉查找树 区间$dp$

    正解:区间$dp$ 解题报告: 传送门$QwQ$ 首先根据二叉查找树的定义可知,数据确定了,这棵树的中序遍历就已经改变了,唯一能改变的就是通过改变权值从而改变结点的深度. 发现这里权值的值没有意义,所 ...

  4. [BZOJ1564][NOI2009]二叉查找树(区间DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1564 分析: 首先因为每个点的数据值不变,所以无论树的形态如何变,树的中序遍历肯定不变 ...

  5. bzoj1564: [NOI2009]二叉查找树

    dp. 首先这棵树是一个treap. 权值我们可以改成任意实数,所以权值只表示相互之间的大小关系,可以离散化. 树的中序遍历是肯定确定的. 用f[l][r][w]表示中序遍历为l到r,根的权值必须大于 ...

  6. BZOJ 1564: [NOI2009]二叉查找树( dp )

    树的中序遍历是唯一的. 按照数据值处理出中序遍历后, dp(l, r, v)表示[l, r]组成的树, 树的所有节点的权值≥v的最小代价(离散化权值). 枚举m为根(p表示访问频率): 修改m的权值 ...

  7. [洛谷P1864] NOI2009 二叉查找树

    问题描述 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左儿子结点的数据值大,而比它右儿子结点的数据值小. 另一方面,这棵查找树中每个结点都有一个权值,每个结点的权值都比它的 ...

  8. P1864 [NOI2009]二叉查找树

    链接P1864 [NOI2009]二叉查找树 这题还是蛮难的--是我菜. 题目描述中的一大堆其实就是在描述\(treap.\),考虑\(treap\)的一些性质: 首先不管怎么转,中序遍历是确定的,所 ...

  9. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

随机推荐

  1. Windows下安装RaibbitMQ

    1.软件准备 1.1 erlang语言包 到http://www.erlang.org/download.html下载,并且运行! 安装目录C:\Program Files (x86)\erl5.10 ...

  2. Tomcat安装部署和安全加固优化以及反向代理应用

    1.Tomcat介绍 Tomcat是Apache软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache.Sun和其他一些公司及个人共同 ...

  3. 理解依赖注入(Dependency Injection)

    理解依赖注入 Yii2.0 使用了依赖注入的思想.正是使用这种模式,使得Yii2异常灵活和强大.千万不要以为这是很玄乎的东西,看完下面的两个例子就懂了. class SessionStorage { ...

  4. mybatis mapper空指针异常的问题

    发现是因为mysql表名不能为  x_x_x 这样的形式,最多只能有一个下划线,不能有多个,否则会找不到数据,进而导致空指针异常 上面的被推翻了,发现原来是因为没有注入mapper才导致空指针异常! ...

  5. java.lang.Boolean.valueOf(String s)

    简单说,就是s为true(这四个字母大小写任意)时,返回值为true,否则为false public class one { public static void main(String[] args ...

  6. php oci8 小试

    Oracle_db.class.php <?phpclass Oracle_db{    public $link;    public function __construct(){      ...

  7. Python数据可视化的10种技能

    今天我来给你讲讲Python的可视化技术. 如果你想要用Python进行数据分析,就需要在项目初期开始进行探索性的数据分析,这样方便你对数据有一定的了解.其中最直观的就是采用数据可视化技术,这样,数据 ...

  8. Spring Cloud(三):服务提供与调用 Eureka【Finchley 版】

    Spring Cloud(三):服务提供与调用 Eureka[Finchley 版]  发表于 2018-04-15 |  更新于 2018-05-07 |  上一篇文章我们介绍了 Eureka 服务 ...

  9. Centos7下安装Oracle11g r2

    我的centos7是在virtualbox下安装的,安装Oracle安装了好久好久,最开始的时候在网上找的两个文章,按照步骤装,有一篇写着装的时候有灰色的竖线,直接按space键或者鼠标右键close ...

  10. JQuery点击打开再点击关闭

    $("#03").click(function() { $("#03").show(speed); $("#03").css("c ...