Linear Regression with One Variable

model Representation

以上篇博文中的房价预测为例,从图中依次来看,m表示训练集的大小,此处即房价样本数量;x表示输入变量或feature(特征),此处即房子面积;y是输出变量或目标变量,此处即房子价格。(x,y)是训练集中的一个样本,如图中加上右上角(i)表示训练集中第i个样本。

上图是机器学习的一个简单流程,我们通过对Training Set(训练集)使用Learning Algorithm 来训练出一个hypothesis函数(hypothesis是机器学习一直沿用下来的一个用语,不用纠结其具体含义),这样使用该函数就可以预估房价了。

hypothesis有很多种形式,上图是线性回归的一张二维坐标系图示,为了简单,途中只有一个输入变量x,纵轴y是输出变量,图中红色的叉是训练集中的点,黑色的直线就是我们的hypothesis函数,可以看到,该直线并没有经过所有的点,所以预估出来的值h(x)就会跟y只存在误差,这就涉及到下面要讲的cost函数。

cost function

cost function实际上就是求方差,预测值与实际值之间的。主要是用来寻找合适的参数。

如上图所示,为了简单起见,这里的theta只设置两个,并用一条直线来拟合。右上角的公式的意思就是寻找使cost function最小的theta值。注意,按照方差的定义来解释,公式中应该是1/m,这里除以2纯粹是为了计算导数方便,之所以可以这样改,是因为虽然方差值变化了,但是据此公式求出的theta值没有影响,比如从含一百个不同的整数的数组挑出最小的那个数的坐标,和把这一百个数除以2后再求得到的结果是一样的。

上图左侧直线是预测函数,右侧cost function。图中的 是实际值。右侧说明,当theta为1时,cost最低,此时的拟合就可认为是最好的拟合,当然上图中的点恰好的在直线上,实际场景中这种现象是不可能的。

现在给一个具体的预测函数,如上图左侧所示,此时我们重新使用两个theta值。右侧是只有一个theta1的cost function,下图是两个theta的cost function,是一个三维图像。

由于多维图像表示麻烦,之后的教程都已轮廓图来表示,以上图为例,用多个平行底面的平面切割图像,会得到很多闭合的线,将这些线投射到底面形成的图像将在之后使用。

稍作分析可知,左侧图形同一条线上的cost值是相同的,最小值则出现在中心那个圈上。

Gradient Descent

问题描述:

将两个theta初始化为0,然后不断改变二者的值来降低cost大小,直到达到我们满意的精度为止。

形象的来看,可以将上图看做一座山,将梯度下降看成一个下山的过程,由于存在局部最优解,上图下山的路径是由好几条的。图中只显示了一条路径。

上图是梯度下降过程,正如图中所说,我们通过不断修改theta的值,直到收敛。“:=”是赋值,“=”相当于c语言中的“==”,是比较。Learning rate是学习速率,在下山那个例子中讲,就是下山的步子大小。需要注意的是,theta的值需要同时更新,像左侧那样。

上图解释了更新theta的原理,求cost function最小值就是求其导数为零的时候。

上图是学习速率的解释,该值太小,收敛就很慢,即第一个图那样,太大则无法收敛,即第二个图那样。

Gradient Descent For Linear Regression

将之前的总结下,应用在一起。关键是上述导数项。

例子中有两个theta,要对其求偏导数,即上图的公式。

这里提到一个batch gradient Descent(批量梯度算法)就是指每步都将所有训练集加入运算。

MachineLearning ---- lesson 2 Linear Regression with One Variable的更多相关文章

  1. 【cs229-Lecture2】Linear Regression with One Variable (Week 1)(含测试数据和源码)

    从Ⅱ到Ⅳ都在讲的是线性回归,其中第Ⅱ章讲得是简单线性回归(simple linear regression, SLR)(单变量),第Ⅲ章讲的是线代基础,第Ⅳ章讲的是多元回归(大于一个自变量). 本文的 ...

  2. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  3. Stanford机器学习---第一讲. Linear Regression with one variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7691571 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  4. 机器学习笔记1——Linear Regression with One Variable

    Linear Regression with One Variable Model Representation Recall that in *regression problems*, we ar ...

  5. Machine Learning 学习笔记2 - linear regression with one variable(单变量线性回归)

    一.Model representation(模型表示) 1.1 训练集 由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y) ...

  6. Ng第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下 ...

  7. 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 I ...

  8. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  9. Lecture0 -- Introduction&&Linear Regression with One Variable

    Introduction What is machine learning? Tom Mitchell provides a more modern definition: "A compu ...

随机推荐

  1. 20155330 2016-2017-2 《Java程序设计》第十周学习总结

    20155330 2016-2017-2 <Java程序设计>第十周学习总结 教材学习内容总结 学习目标 了解计算机网络基础 掌握Java Socket编程 理解混合密码系统 掌握Java ...

  2. 20155333 2016-2017-2《Java程序设计》第二周学习总结

    20155333 2016-2017-2<Java程序设计>第二周学习总结 教材学习内容总结 1. Java 类型系统:基本类型和类类型(参考类型) 2. 基本类型: 整数:short整数 ...

  3. 莫队算法&BZOJ2038

    题目传送门 今天看了分块,顺便把基本的莫队学习了一下. 莫队算法是一种离线算法,复杂度可以达到O((M+N)*Sqrt(N)); 对于询问区间的左端点分块,块内的右端点从小到大排列. 对区间进行偏移操 ...

  4. Android 学习1

    使用eclipse做为开发IDE, 导包快捷键 在显红的地方按shift+ctrl+o 另外自动补全使用alt+/

  5. 180718-jar包执行传参使用小结

    jar包执行时传参的使用姿势 虽说我们现在大多不太直接使用jar包运行方式,目前比较主流的是将自己的服务丢在某个容器中(如tomcat,jetty等)运行,比如我之前所属的电商公司,就是将项目打包为w ...

  6. Lua学习笔记(3):运算符

    算术运算符 运算符 描述 + 加法运算符 - 减法运算符 * 乘法运算符 / 除法运算符 % 取模运算符 ^ 乘幂 A=3 print(A^2)输出9 关系运算符 ~= 不等于 == 等于 > ...

  7. Qt creator 最常用的13个快捷键

    alt +enter // 自动创建类的定义 F1 // 查看帮助,文档 F2 // 快速到变量声明 Shift + F2 // 函数的声明和定义之间快速切换 F4 // 在 cpp 和 h 文件切换 ...

  8. SQLAlchemy 简单笔记

    ORM 江湖##### 曾几何时,程序员因为惧怕SQL而在开发的时候小心翼翼的写着sql,心中总是少不了恐慌,万一不小心sql语句出错,搞坏了数据库怎么办?又或者为了获取一些数据,什么内外左右连接,函 ...

  9. 学习使用Git 版本控制 代码管理

    title: 学习使用Git 版本控制 代码管理 notebook: 经验累积 tags:Git --- Git 版本控制 学习教程 Git版本控制器,可以作为程序员.计算机科学和软件工程的研究人员在 ...

  10. “Hello World!”团队——Final发布用户使用报告

    博客内容: 1.用户体验报告表 2.用户评论截图 3.总结 一.用户体验报告表 用户使用报告 用户类别 用户姓名(化名) 性别 用户职业 使用频次 用户评论 新增用户 小小静 女 中学信息技术老师 8 ...