/*
矩阵快速幂:
第n个人如果是m,有f(n-1)种合法结果
第n个人如果是f,对于第n-1和n-2个人有四种ff,fm,mf,mm其中合法的只有fm和mm
对于ffm第n-3个人只能是m那么有f(n-4)种
对于fmm那么对于第n-3个人没有限制有f(n-3)种
顾f(n)=f(n-1)+f(n-3)+f(n-4);
求出前四个结果分别是 a[1]=2;a[2]=4;a[3]=6;a[4]=9;
A=|a[4],a[3],a[2],a[1]|
可以构造矩阵
|1 1 0 0 |
B= |0 0 1 0 |
|1 0 0 1 |
|1 0 0 0 |
|1 1 0 0 |^n
|0 0 1 0 |
|a[4],a[3],a[2],a[1]|* |1 0 0 1 | = |a[5],a[4],a[3],a[2]|
|1 0 0 0 |
A*B^n=C;
直接套模板即可。
*/
#include<stdio.h>
#include<string.h>
#define N 11
int a[N];
struct matrix{
__int64 mat[5][5];
};
matrix matmul(matrix b,matrix c,int mm) {
int i,j,k;
matrix d;
memset(d.mat,0,sizeof(d.mat));
for(i=0;i<4;i++)
for(j=0;j<4;j++)
for(k=0;k<4;k++) {
d.mat[i][j]+=b.mat[i][k]*c.mat[k][j];
d.mat[i][j]%=mm;
}
return d;
}
matrix matpow(matrix f,matrix ff,int k,int m) {
while(k) {
if(k&1)
ff=matmul(ff,f,m);
f=matmul(f,f,m);
k/=2;
}
return ff;
}
int main(){
int n,m;
while(scanf("%d%d",&n,&m)!=EOF) {
a[1]=2;a[2]=4;a[3]=6;a[4]=9;
if(n<=4) {
printf("%d\n",a[n]%m);
continue;
}
matrix aa,bb,cc;
memset(aa.mat,0,sizeof(aa.mat));
memset(bb.mat,0,sizeof(bb.mat));
aa.mat[0][0]=1;//构建矩阵
aa.mat[2][0]=1;
aa.mat[3][0]=1;
aa.mat[0][1]=1;
aa.mat[1][2]=1;
aa.mat[2][3]=1;
bb.mat[0][0]=a[4];
bb.mat[0][1]=a[3];
bb.mat[0][2]=a[2];
bb.mat[0][3]=a[1];
cc=matpow(aa,bb,n-4,m);
printf("%d\n",cc.mat[0][0]);
}
return 0;}

hdu 2604 矩阵快速幂模板题的更多相关文章

  1. luoguP3390(矩阵快速幂模板题)

    链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<c ...

  2. hdu 1575 求一个矩阵的k次幂 再求迹 (矩阵快速幂模板题)

    Problem DescriptionA为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input数据的第一行是一个T,表示有T组数据.每组数据的第一行有 ...

  3. HDU 1575 矩阵快速幂裸题

    题意:中文题 我就不说了吧,... 思路:矩阵快速幂 // by SiriusRen #include <cstdio> #include <cstring> using na ...

  4. Final Destination II -- 矩阵快速幂模板题

    求f[n]=f[n-1]+f[n-2]+f[n-3] 我们知道 f[n] f[n-1] f[n-2]         f[n-1]  f[n-2]  f[n-3]         1    1    ...

  5. POJ3070 斐波那契数列递推 矩阵快速幂模板题

    题目分析: 对于给出的n,求出斐波那契数列第n项的最后4为数,当n很大的时候,普通的递推会超时,这里介绍用矩阵快速幂解决当递推次数很大时的结果,这里矩阵已经给出,直接计算即可 #include< ...

  6. CodeForces 450B (矩阵快速幂模板题+负数取模)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51919 题目大意:斐波那契数列推导.给定前f1,f2,推出指定第N ...

  7. hdu1575 Tr A 矩阵快速幂模板题

    hdu1575   TrA 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 都不需要构造矩阵,矩阵是题目给的,直接套模板,把对角线上的数相加就好 ...

  8. HDU1757又是一道矩阵快速幂模板题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 按照题目的要求构造矩阵 //Author: xiaowuga //矩阵: //a0 a1 a2 ...

  9. 51 Nod 1242 斐波那契数列的第N项(矩阵快速幂模板题)

    1242 斐波那契数列的第N项  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) ...

随机推荐

  1. hdu1512 Monkey King(并查集,左偏堆)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1512 题目大意:有n个猴子,一开始每个猴子只认识自己.每个猴子有一个力量值,力量值越大表示这个猴子打架 ...

  2. java 键盘输入多种方法

    转! 分类: java学习2012-11-04 09:58 8427人阅读 评论(1) 收藏 举报 一.java不像C中拥有scanf这样功能强大的函数,大多是通过定义输入输出流对象.常用的类有Buf ...

  3. EasyUI系列学习(七)-Linkbutton(按钮)

    一.加载组件 1.使用class加载 <a href="#" class="easyui-linkbutton">按钮</a> 2.使用 ...

  4. Paxos,Raft,Zab一致性协议-Raft篇

    Raft是一个一致性算法,旨在易于理解.它提供了Paxos的容错和性能.不同之处在于它被分解为相对独立的子问题,它清楚地解决了实际系统所需的所有主要部分.我们希望Raft能够为更广泛的受众提供共识,并 ...

  5. 2559. [NOIP2016]组合数问题

    [题目描述] [输入格式] 从文件中读入数据. 第一行有两个整数t, k,其中t代表该测试点总共有多少组测试数据,k的意义见[问题描述]. 接下来t行每行两个整数n, m,其中n, m的意义见[问题描 ...

  6. Android 简单的语音播报

    不解释快上车 Main.class package com.example.myapp; import android.app.AlertDialog;import android.os.Bundle ...

  7. SQL SERVER 执行计划各字段注释

    SET SHOWPLAN_ALL使 Microsoft® SQL Server™ 不执行 Transact-SQL 语句.相反,SQL Server 返回有关语句执行方式和语句预计所需资源的详细信息. ...

  8. Ajax异步刷新省市级联

    省市级联在web前端用户注册使用非常广泛.Ajax异步刷新省市级联.如图:选择不同的区,自动加载相应的街. <TD class=field>位 置:</TD> <TD&g ...

  9. Redis 它是什么?它用来做什么?它的优势与短板如何?

    阅读目的: 对什么是内存型数据库有概念性的认知.? Redis 是什么? 通常而言目前的数据库分类有几种,包括 SQL/NSQL,,关系数据库,键值数据库等等 等,分类的标准也不以,Redis本质上也 ...

  10. Codeforces_776_C_(思维)(前缀和)

    C. Molly's Chemicals time limit per test 2.5 seconds memory limit per test 512 megabytes input stand ...