T1 立方数(cubic)

Time Limit:1000ms   Memory Limit:128MB

题目描述

LYK定义了一个数叫“立方数”,若一个数可以被写作是一个正整数的3次方,则这个数就是立方数,例如1,8,27就是最小的3个立方数。

现在给定一个数P,LYK想要知道这个数是不是立方数。

当然你有可能随机输出一些莫名其妙的东西来骗分,因此LYK有T次询问~

输入格式(cubic.in)

第一行一个数T,表示有T组数据。

接下来T行,每行一个数P。

输出格式(cubic.out)

输出T行,对于每个数如果是立方数,输出“YES”,否则输出“NO”。

输入样例

3

8

27

28

输出样例

YES

YES

NO

数据范围

对于30%的数据p<=100。

对于60%的数据p<=10^6。

对于100%的数据p<=10^18,T<=100。

二分是否存在使p为立方数的数

 #include <cstdio>

 #define LL long long
inline void read(LL &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
}
LL L,R,Mid,tot; int Presist()
{
// freopen("1.txt","r",stdin);
freopen("cubic.in","r",stdin);
freopen("cubic.out","w",stdout);
LL t; read(t);
for(LL p; t--; )
{
read(p);bool flag=;
for(L=,R=1e6+; L<=R; )
{
Mid=L+R>>;
tot=Mid*Mid*Mid;
if(tot==p)
{
flag=;
break;
}
else if(tot<p) L=Mid+;
else if(tot>p) R=Mid-;
}
if(flag) puts("YES");
else puts("NO");
}
return ;
} int Aptal=Presist();
int main(int argc,char**argv){;}

AC

T2 立方数2(cubicp)

Time Limit:1000ms   Memory Limit:128MB

题目描述

LYK定义了一个数叫“立方数”,若一个数可以被写作是一个正整数的3次方,则这个数就是立方数,例如1,8,27就是最小的3个立方数。

LYK还定义了一个数叫“立方差数”,若一个数可以被写作是两个立方数的差,则这个数就是“立方差数”,例如7(8-1),26(27-1),19(27-8)都是立方差数。

现在给定一个数P,LYK想要知道这个数是不是立方差数。

当然你有可能随机输出一些莫名其妙的东西,因此LYK有T次询问~

这个问题可能太难了…… 因此LYK规定P是个质数!

输入格式(cubicp.in)

第一行一个数T,表示有T组数据。

接下来T行,每行一个数P。

输出格式(cubicp.out)

输出T行,对于每个数如果是立方差数,输出“YES”,否则输出“NO”。

输入样例

5

2

3

5

7

11

输出样例

NO

NO

NO

YES

NO

数据范围

对于30%的数据p<=100。

对于60%的数据p<=10^6。

对于100%的数据p<=10^12,T<=100。

 #include <cstdio>

 #define LL long long
inline void read(LL &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
}
LL L,R,Mid,l,r,mid,tmp,x,y; inline int check(LL oo)
{
LL ret=;
for(l=,r=1e4+; l<=r; )
{
mid=l+r>>;
x=mid*mid*mid;
if(x==oo) return ;
else if(oo>x) l=mid+,ret=;
else if(oo<x) r=mid-,ret=-;
}
return ret;
} int Presist()
{
// freopen("1.txt","r",stdin);
// freopen("cubicp.in","r",stdin);
// freopen("cubicp.out","w",stdout);
LL t; read(t);
for(LL p; t--; )
{
read(p);bool flag=;
for(L=,R=1e4+; L<=R; )
{
Mid=L+R>>;
y=Mid*Mid*Mid;
tmp=check(y-p);
if(tmp==)
{
flag=;
break;
}
else if(tmp>) R=Mid-;
else if(tmp<) L=Mid+;
}
if(flag) puts("YES");
else puts("NO");
}
return ;
} int Aptal=Presist();
int main(int argc,char**argv){;}

考试的逗比二分

p=x^3-y^3=(x-y)*(x^2+x*y+y^2),因为p为素数,

所以x-y=1,所以x=y+1,可以枚举y,检验是否存在p

 #include <cstdio>

 #define LL long long
inline void read(LL &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
} int Presist()
{
// freopen("cubicp.in","r",stdin);
freopen("cubicp.out","w",stdout);
LL t,tmp; read(t);
for(LL p; t--; )
{
read(p);bool flag=;
for(int y=; y<=1e6+; ++y)
{
tmp=3ll*y*y+3ll*y+;
if(tmp==p) { flag=;break; }
else if(tmp>p) break;
}
if(flag) puts("YES");
else puts("NO");
}
return ;
} int Aptal=Presist();
int main(int argc,char**argv){;}

AC

T3 猜数字(number)

Time Limit:1000ms   Memory Limit:128MB

题目描述

LYK在玩猜数字游戏。

总共有n个互不相同的正整数,LYK每次猜一段区间的最小值。形如[li,ri]这段区间的数字的最小值一定等于xi。

我们总能构造出一种方案使得LYK满意。直到…… LYK自己猜的就是矛盾的!

例如LYK猜[1,3]的最小值是2,[1,4]的最小值是3,这显然就是矛盾的。

你需要告诉LYK,它第几次猜数字开始就已经矛盾了。

输入格式(number.in)

第一行两个数n和T,表示有n个数字,LYK猜了T次。
    接下来T行,每行三个数分别表示li,ri和xi。

输出格式(number.out)

输出一个数表示第几次开始出现矛盾,如果一直没出现矛盾输出T+1。

输入样例

20 4

1 10 7

5 19 7

3 12 8

1 20 1

输出样例

3

数据范围

对于50%的数据n<=8,T<=10。

对于80%的数据n<=1000,T<=1000。

对于100%的数据1<=n,T<=1000000,1<=li<=ri<=n,1<=xi<=n(但并不保证一开始的所有数都是1~n的)。

二分不可行的最早次数,从大到小枚举x,

对于一段区间,如果被>x的数覆盖过,则不可行,

判断比xi大的区间的并集是否完全覆盖当前区间,xi相等时,更新区间的交

可以用并查集,将确定最小值的区间放到一个并查集里,

 #include <algorithm>
#include <cstdio> #define min(a,b) (a<b?a:b)
#define max(a,b) (a>b?a:b) inline void read(int &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
}
const int N();
int n,q;
struct Node {
int l,r,x;
bool operator < (const Node&a)const
{
return x>a.x;
}
}g[N],tmp[N]; int L,R,Mid,ans;
int fa[N],lmin,lmax,rmin,rmax;
int find(int x)
{
return fa[x]==x ?x :fa[x]=find(fa[x]);
}
inline bool check(int t)
{
for(int i=; i<=n+; ++i) fa[i]=i;
for(int i=; i<=t; ++i) tmp[i]=g[i];
std:: sort(tmp+,tmp+t+);
lmin=lmax=tmp[].l, rmin=rmax=tmp[].r;
for(int i=,j,k; i<=t; ++i)
{
if(tmp[i].x<tmp[i-].x)
{
if(find(lmax)>rmin) return ;
j=find(lmin), k=find(rmax+);
for(; j<=rmax; ++j) fa[find(j)]=k;
lmax=lmin=tmp[i].l;
rmax=rmin=tmp[i].r;
}
else
{
lmin=min(lmin,tmp[i].l);
lmax=max(lmax,tmp[i].l);
rmin=min(rmin,tmp[i].r);
rmax=max(rmax,tmp[i].r);
if(lmax>rmin) return ;
}
}
return find(lmax)>rmin;
} int Presist()
{
freopen("number.in","r",stdin);
freopen("number.out","w",stdout); read(n),read(q);
for(int i=; i<=q; ++i)
read(g[i].l),read(g[i].r),read(g[i].x);
for(R=n; L<=R; )
{
Mid=L+R>>;
if(check(Mid))
{
ans=Mid;
R=Mid-;
}
else L=Mid+;
}
printf("%d\n",ans);
return ;
} int Aptal=Presist();
int main(int argc,char**argv){;}

AC

2017-10-28-morning-清北模拟赛的更多相关文章

  1. 2017.10.1 国庆清北 D1T1 zhx的字符串题

    题目背景 2017国庆清北D1T1 题目描述 你是能看到第一题的 friends 呢. ——hja 何大爷对字符串十分有研究,于是天天出字符串题虐杀 zhx.何大爷今天为 字符串定义了新的权值计算方法 ...

  2. 2017.10.3北京清北综合强化班DAY3

    括号序列(bracket) Time Limit:1000ms   Memory Limit:128MB 题目描述 LYK有一个括号序列,但这个序列不一定合法. 一个合法的括号序列如下: ()是合法的 ...

  3. 2017.10.4北京清北综合强化班DAY4

    财富(treasure) Time Limit:1000ms   Memory Limit:128MB 题目描述 LYK有n个小伙伴.每个小伙伴有一个身高hi. 这个游戏是这样的,LYK生活的环境是以 ...

  4. 2017.10.7北京清北综合强化班DAY7

    1.计数 (count.cpp/c/pas) 时间限制:1s 内存限制:256MB [问题描述] 给出m个数a[1],a[2],…,a[m] 求1~n中有多少数不是a[1],a[2],…,a[m]的倍 ...

  5. 2017.10.6北京清北综合强化班DAY6

    题目大意:改变一个数的位置 把一个序列变成不下降序列 题解: 设置一个pre,如果破坏单调性,就把‘删除’这个.否则把pre修改为当前元素的值. 考试时这样得了90分,是因为我的做法只能过这样的数据 ...

  6. 2017.10.5北京清北综合强化班DAY5

    拼不出的数lost.in/.out/.cpp[问题描述]3 个元素的集合{5, 1,2} 的所有子集的和分别是0,1, 2, 3, 5, 6, 7, 8.发现最小的不能由该集合子集拼出的数字是4.现在 ...

  7. 2017.10.1北京清北综合强化班DAY1

    a[问题描述]你是能看到第一题的 friends 呢.——hja何大爷对字符串十分有研究,于是天天出字符串题虐杀 zhx. 何大爷今天为字符串定义了新的权值计算方法.一个字符串 由小写字母组成,字符串 ...

  8. 2017.10.4 国庆清北 D4T2 正方形

    题目描述 在一个10000*10000的二维平面上,有n颗糖果. LYK喜欢吃糖果!并且它给自己立了规定,一定要吃其中的至少C颗糖果! 事与愿违,LYK只被允许圈出一个正方形,它只能吃在正方形里面的糖 ...

  9. 2017.10.6 国庆清北 D6T2 同余方程组

    题目描述 求关于x 的同余方程组 x%a1 = b1 x%a2 = b2 x%a3 = b3 x%a4 = b4 的大于等于0 的最小整数解. 输入输出格式 输入格式: 一行8 个整数,表示a1; b ...

  10. 2017.10.6 国庆清北 D6T1 排序

    题目描述 小Z 有一个数字序列a1; a2; .... ; an,长度为n,小Z 只有一个操作:选 定p(1<p<n),然后把ap 从序列中拿出,然后再插⼊到序列中任意位置. 比如a 序列 ...

随机推荐

  1. SpringBoot整合升级Spring Security 报错 【The request was rejected because the URL was not normalized】

    前言 最近LZ给项目框架升级, 从Spring1.x升级到Spring2.x, 在这里就不多赘述两个版本之间的区别以及升级的原因. 关于升级过程中踩的坑,在其他博文中会做比较详细的记录,以便给读者参考 ...

  2. iOS 静态库,动态库与 Framework

    iOS 静态库,动态库与 Framework     静态库与动态库的区别 首先来看什么是库,库(Library)说白了就是一段编译好的二进制代码,加上头文件就可以供别人使用. 什么时候我们会用到库呢 ...

  3. CSS 文本下划线 text-decoration

      定义和用法 text-decoration 属性规定添加到文本的修饰. 可能的值 值 描述 none 默认.定义标准的文本. underline 定义文本下的一条线. overline 定义文本上 ...

  4. CSS3-弹性盒模型-FlexBox

    Flex容器属性 display 定义一个Flex容器,根据其取的值来决定是内联还是块.Flex容器会为其内容建立新的伸缩格式化上下文. .container { display: flex; /* ...

  5. $(addprefix PREFIX,NAMES…)

    addprefix 是makefile中的函数,是添加前缀的函数例如:$(addprefix src/,foo bar) 返回值为“src/foo src/bar”.所以上面的意思是为dirver_d ...

  6. 杭电 1159 Common Subsequence

    Problem Description A subsequence of a given sequence is the given sequence with some elements (poss ...

  7. 排序算法C语言实现——堆排序

    /*堆排nlog(n)*//*堆排复杂度分析1.建堆((n*log(n))/2)    循环n/2次,每次调用HeapAdjust函数    HeapAdjust内部循环log(n)2.调整堆(((n ...

  8. FastJson生成json时,显示Null属性

    FastJson生成json时,默认不会输出null字段. 移动端,有时候,需要后端提供完整的字段说明. Map < String , Object > jsonMap = new Has ...

  9. 织梦dedecms自定义表单设置必填项

    1. 用php验证 在plus/diy.php的第 40行下加 //增加必填字段判断 if($required!=''){ if(preg_match('/,/', $required)) { $re ...

  10. MarkdownPad 2 HTML 渲染错误解决办法

    MarkdownPad 2 HTML 渲染错误解决办法 1. 安装SDK工具包 Awesomium 1.6.6 SDK 2. 安装渲染插件Microsoft’s DirectX End-User Ru ...