You are given a sequence of n integers a1, a2, ..., an.

Determine a real number x such that the weakness of the sequence a1 - x, a2 - x, ..., an - x is as small as possible.

The weakness of a sequence is defined as the maximum value of the poorness over all segments (contiguous subsequences) of a sequence.

The poorness of a segment is defined as the absolute value of sum of the elements of segment.

Input

The first line contains one integer n (1 ≤ n ≤ 200 000), the length of a sequence.

The second line contains n integers a1, a2, ..., an (|ai| ≤ 10 000).

Output

Output a real number denoting the minimum possible weakness of a1 - x, a2 - x, ..., an - x. Your answer will be considered correct if its relative or absolute error doesn't exceed 10 - 6.

Example

Input
3
1 2 3
Output
1.000000000000000
Input
4
1 2 3 4
Output
2.000000000000000
Input
10
1 10 2 9 3 8 4 7 5 6
Output
4.500000000000000

Note

For the first case, the optimal value of x is 2 so the sequence becomes  - 1, 0, 1and the max poorness occurs at the segment "-1" or segment "1". The poorness value (answer) equals to 1 in this case.

For the second sample the optimal value of x is 2.5 so the sequence becomes  - 1.5,  - 0.5, 0.5, 1.5 and the max poorness occurs on segment "-1.5 -0.5" or "0.5 1.5". The poorness value (answer) equals to 2 in this case.

#include<cstdio>
#include<algorithm>
#include<vector>
#include<iostream>
#define MAXN 200009
#define eps 1e-11 + 1e-12/2
typedef long long LL; using namespace std;
/*
要求a[i]减去某个数字x后的最大字段和的最小绝对值!
s(a[i]-x)是单调的,加上绝对值之后变成单谷函数,三分搜索
*/ int n;
double a[MAXN],tmp[MAXN];
double cal(double x)
{
for (int i = ; i < n; i++)
tmp[i] = a[i] - x;
double cur = , ans = ;
for (int i = ; i < n; i++)
{
cur = cur + tmp[i];
if (cur < )
cur = ;
ans = max(cur, ans);
}
cur = ;
for (int i = ; i < n; i++)
{
cur = cur - tmp[i];
if (cur < )
cur = ;
ans = max(cur, ans);
}
return ans;
}
int main()
{
scanf("%d", &n);
for (int i = ; i < n; i++)
scanf("%lf", &a[i]);
double beg = -, end = ;
int time = ;
while (time--)
{
double ml = (beg + beg + end) / , mr = (end + end + beg) / ;
if (cal(ml) > cal(mr))
beg = ml;
else
end = mr;
}
printf("%.15lf\n", cal(beg));
return ;
}

Weakness and Poorness CodeForces - 578C 三分搜索 (精度!)的更多相关文章

  1. codeforces 578c//Weakness and Poorness// Codeforces Round #320 (Div. 1)

    题意:一个数组arr,一个数字x,要使arr-x的最大子段最小,问该最小值. 三分x,复杂度logn,内层是最大子段的模板,只能用n复杂度的.因为是绝对值最大,正负各求一次,取大的.精度卡得不得了,要 ...

  2. codeforces 578c - weekness and poorness - 三分

    2017-08-27 17:24:07 writer:pprp 题意简述: • Codeforces 578C Weakness and poorness• 给定一个序列A• 一个区间的poornes ...

  3. Codeforces Round #320 (Div. 1) [Bayan Thanks-Round] C. Weakness and Poorness 三分 dp

    C. Weakness and Poorness Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...

  4. Codeforces Round #320 (Div. 2) [Bayan Thanks-Round] E. Weakness and Poorness 三分

    E. Weakness and Poorness time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  5. Codeforces E. Weakness and Poorness(三分最大子列和)

    题目描述: E. Weakness and Poorness time limit per test 2 seconds memory limit per test 256 megabytes inp ...

  6. Codeforces 578.C Weakness and Poorness

    C. Weakness and Poorness time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  7. 【CodeForces】578 C. Weakness and Poorness

    [题目]C. Weakness and Poorness [题意]给定含n个整数的序列ai,定义新序列为ai-x,要使新序列的最大子段和绝对值最小,求实数x.n<=2*10^5. [算法]二分| ...

  8. 三分搜索-ZOJ LightBulb

    开始算法基础学习的第一天 今天学习的内容是三分搜索 相对来说很基础的内容(还是觉得脑子不够用) 三分搜索主要用于凸函数查找极大值. (盗个图) 如图所示 若要查找该函数的最大值 可以考虑和二分法一样的 ...

  9. hdu 4355 Party All the Time(三分搜索)

    Problem Description In the Dark forest, there is a Fairy kingdom where all the spirits will go toget ...

随机推荐

  1. 2017 Pycharm激活码

    BIG3CLIK6F-eyJsaWNlbnNlSWQiOiJCSUczQ0xJSzZGIiwibGljZW5zZWVOYW1lIjoibGFuIHl1IiwiYXNzaWduZWVOYW1lIjoiI ...

  2. Apache Kafka官方文档翻译(原创)

    Apache Kafka是一个分布式流平台.准确的说是什么意思呢?我们认为流平台具有三种关键能力: 1.让你对数据流进行发布订阅.因此他很像一个消息队列和企业级消息系统. 2.让你以高容错的方式存储数 ...

  3. C#的装箱与拆箱与基本类型

    装箱:值类型转换为对象类型, 实例: int val = 8; object obj = val;//整型数据转换为了对象类型(装箱) 拆箱:之前由值类型转换而来的对象类型再转回值类型, 实例: in ...

  4. Vue组件之间通信的三种方式

    最近在看梁颠编著的<Vue.js实战>一书,感觉颇有收获,特此记录一些比价实用的技巧. 组件是MVVM框架的核心设计思想,将各功能点组件化更利于我们在项目中复用,这类似于我们服务端面向对象 ...

  5. ubantu MongoDB安装

    转 https://blog.csdn.net/flyfish111222/article/details/51886787 本博文介绍了MongoDB,并详细指引读者在Ubuntu下MongoDB的 ...

  6. 启用adb wifi无线调试功能(无需root)

    1  工具 电脑.手机 2  前提 电脑和手机出于同一网段 3  步骤 以管理员方式打开cmd,运行 adb tcpip 5555(执行tcpip调试模式) adb connect  192.168. ...

  7. linux gcc编译protocol

    gcc -c test.pb-c.c//生成test.pb-c.o文件 gcc -c udp_socket_server.c//生成udp_socket_server.o gcc -o test1 u ...

  8. Farseer.net轻量级开源框架 中级篇:动态数据库访问

    导航 目   录:Farseer.net轻量级开源框架 目录 上一篇:Farseer.net轻量级开源框架 中级篇: 自定义配置文件 下一篇:Farseer.net轻量级开源框架 中级篇: 数据库切换 ...

  9. Squid 正向代理

    实现通过特定设备对特定的网址访问加速 使用squid 正向代理 实现,区别于反向代理,两者区别的根本在于作为中转的服务器在一个完整的请求中是代表客户端还是代表服务器. 服务端设置 1.安装程序包(推荐 ...

  10. POJ_1847_Tram

    Tram Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 11159   Accepted: 4089 Description ...