P2158 [SDOI2008]仪仗队

题目描述

作为体育委员,C君负责这次运动会仪仗队的训练。仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图)。 现在,C君希望你告诉他队伍整齐时能看到的学生人数。


错误日志: 没有特判 \(N = 1\) 的情况


Solution

除开 \((0,1) (1,0) (0,0)\) 这三个点不谈, 可以发现一个点可以被看到, 当且仅当 \(gcd(x, y) = 1\)

所以把目光放到互质

类似埃式筛法, 我们可以在 \(O(n\log n)\) 的时间内求出 \(1-n\) 的欧拉函数

void euler(int n){
for(int i = 2;i <= n;i++)phi[i] = i;
for(int i = 2;i <= n;i++){
if(phi[i] == i){
for(int j = i;j <= n;j += i){
phi[j] = phi[j] / i * (i - 1);
}
}
}
}

发现这题左上部分与右下部分是对称的, 因为 \(y = x\) 这条线上的点被 \((1,1)\) 盖住了, 所以欧拉函数实际上只累积到 \(n - 1\)

我们还要加上最开始除开的三个点

即所求为: $$2 * \sum_{i = 2}^{N - 1}{\phi(i)} + 3$$

注意特判 \(N = 1\) 的情况

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
typedef long long LL;
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 40019;
int num, phi[maxn];
void euler(int n){
for(int i = 2;i <= n;i++)phi[i] = i;
for(int i = 2;i <= n;i++){
if(phi[i] == i){
for(int j = i;j <= n;j += i){
phi[j] = phi[j] / i * (i - 1);
}
}
}
}
int main(){
num = RD();
if(num == 1){puts("0");return 0;}
euler(num - 1);
int ans = 0;
for(int i = 2;i <= num - 1;i++)ans += phi[i];
printf("%d\n", ans * 2 + 3);
return 0;
}

不知道有啥卵用的欧拉定理

若 $$a \perp n$$ 则

\[a^{\phi(n)\equiv}1(mod\ n)
\]

P2158 [SDOI2008]仪仗队 && 欧拉函数的更多相关文章

  1. P2158 [SDOI2008]仪仗队 欧拉函数模板

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  2. 洛谷P2158 [SDOI2008]仪仗队 欧拉函数的应用

    https://www.luogu.org/problem/P2158 #include<bits/stdc++.h> #define int long long using namesp ...

  3. BZOJ2190 [SDOI2008]仪仗队 [欧拉函数]

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  4. 【bzoj2190】[SDOI2008]仪仗队 欧拉函数

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  5. 【P2158】仪仗队&欧拉函数详解

    来一道数论题吧. 这个题一眼看上去思路明确,应该是数论,但是推导公式的时候却出了问题,根本看不出来有什么规律.看了马佬题解明白了这么个规律貌似叫做欧拉函数,于是就去百度学习了一下这东西. 欧拉函数的含 ...

  6. luogu2158 [SDOI2008]仪仗队 欧拉函数

    点 $ (i,j) $ 会看不见当有 $ k|i $ 且 $ k|j$ 时. 然后就成了求欧拉函数了. #include <iostream> #include <cstring&g ...

  7. BZOJ 2190: [SDOI2008]仪仗队( 欧拉函数 )

    假设C君为(0, 0), 则右上方为(n - 1, n - 1). 一个点(x, y) 能被看到的前提是gcd(x, y) = 1, 所以 answer = ∑ phi(i) * 2 + 2 - 1 ...

  8. 2190: [SDOI2008]仪仗队(欧拉函数)

    2190: [SDOI2008]仪仗队 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3235  Solved: 2089 Description 作 ...

  9. P2158 [SDOI2008] (欧拉函数

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

随机推荐

  1. Mysql常用配置及优化

    [client]# 该目录下的内容常用来进行localhost登陆,一般不需要修改port = 3306 # 端口号socket = /var/lib/mysql/mysql.sock # 套接字文件 ...

  2. 关于echart柱形图的使用问题

    关于一个数据对应两个值的问题 series: [{ name: '数量(个)', type: 'bar', barWidth: '30%', barGap: , //两个数据条没有间距 data: y ...

  3. Beta Scrum Day 1 — 听说

    听说

  4. 读《我是IT小小鸟》有感

    我是一只IT小小鸟,我与IT结缘.书中是作者对个人经历与经验在IT下的体会,却给了我们很好的借鉴. IT这门行业,不仅仅再局限于如我们高中老师教学所要求的内容.IT更加开放,可以通过GitHub.CS ...

  5. 第一个spring冲刺

    第一天商量讨论出我们选择的题目为四则运算,虽然在上一个学期已经做过了,但是还有完善的地方,希望能够做出创新,另外下面的燃尽图是我们预测的3个阶段的进度,按情况不同可能实际的情况也不同,但是我们会尽量跟 ...

  6. WinForm中DataGridView的全选与取消全选

    /// <summary> /// 全选 /// </summary> private void SelectAll() { //结束列表的编辑状态,否则可能无法改变Check ...

  7. 使用mdadm创建磁盘RAID10整列,RAID5出现故障,自动替换硬盘

    首先需了解mdadm的参数使用 . 第一步: 先在虚拟机中添加四块硬板 第二步:使用mdadm命令创建RAID10名称为"/dev/md0" -C代表创建操作,v 显示创建过程,- ...

  8. 对TCP/IP网络参数进行调整

    对TCP/IP网络参数进行调整 调整TCP/IP网络参数,可以增强抗SYN Flood的能力,命令如下所示:# echo 'net.ipv4.tcp_syncookies = 1' >> ...

  9. 自动创建web.xml

    摘自:http://blog.csdn.net/weiral/article/details/51366485 今天在学习JSP时先创建了一个web项目,后来在用到web.xml文件时,才发现项目创建 ...

  10. 笔记之远程桌面服务(RDS)

    Windows默认只能有2个用户同时通过RDP进行连接,非常不方便,于是借此机会学习了下Win2012R2的远程桌面配置.以下我把学习过程记录一下: 1. 最开始我觉得只需要安装“Remote Des ...