P2158 [SDOI2008]仪仗队

题目描述

作为体育委员,C君负责这次运动会仪仗队的训练。仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图)。 现在,C君希望你告诉他队伍整齐时能看到的学生人数。


错误日志: 没有特判 \(N = 1\) 的情况


Solution

除开 \((0,1) (1,0) (0,0)\) 这三个点不谈, 可以发现一个点可以被看到, 当且仅当 \(gcd(x, y) = 1\)

所以把目光放到互质

类似埃式筛法, 我们可以在 \(O(n\log n)\) 的时间内求出 \(1-n\) 的欧拉函数

void euler(int n){
for(int i = 2;i <= n;i++)phi[i] = i;
for(int i = 2;i <= n;i++){
if(phi[i] == i){
for(int j = i;j <= n;j += i){
phi[j] = phi[j] / i * (i - 1);
}
}
}
}

发现这题左上部分与右下部分是对称的, 因为 \(y = x\) 这条线上的点被 \((1,1)\) 盖住了, 所以欧拉函数实际上只累积到 \(n - 1\)

我们还要加上最开始除开的三个点

即所求为: $$2 * \sum_{i = 2}^{N - 1}{\phi(i)} + 3$$

注意特判 \(N = 1\) 的情况

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
typedef long long LL;
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 40019;
int num, phi[maxn];
void euler(int n){
for(int i = 2;i <= n;i++)phi[i] = i;
for(int i = 2;i <= n;i++){
if(phi[i] == i){
for(int j = i;j <= n;j += i){
phi[j] = phi[j] / i * (i - 1);
}
}
}
}
int main(){
num = RD();
if(num == 1){puts("0");return 0;}
euler(num - 1);
int ans = 0;
for(int i = 2;i <= num - 1;i++)ans += phi[i];
printf("%d\n", ans * 2 + 3);
return 0;
}

不知道有啥卵用的欧拉定理

若 $$a \perp n$$ 则

\[a^{\phi(n)\equiv}1(mod\ n)
\]

P2158 [SDOI2008]仪仗队 && 欧拉函数的更多相关文章

  1. P2158 [SDOI2008]仪仗队 欧拉函数模板

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  2. 洛谷P2158 [SDOI2008]仪仗队 欧拉函数的应用

    https://www.luogu.org/problem/P2158 #include<bits/stdc++.h> #define int long long using namesp ...

  3. BZOJ2190 [SDOI2008]仪仗队 [欧拉函数]

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  4. 【bzoj2190】[SDOI2008]仪仗队 欧拉函数

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  5. 【P2158】仪仗队&欧拉函数详解

    来一道数论题吧. 这个题一眼看上去思路明确,应该是数论,但是推导公式的时候却出了问题,根本看不出来有什么规律.看了马佬题解明白了这么个规律貌似叫做欧拉函数,于是就去百度学习了一下这东西. 欧拉函数的含 ...

  6. luogu2158 [SDOI2008]仪仗队 欧拉函数

    点 $ (i,j) $ 会看不见当有 $ k|i $ 且 $ k|j$ 时. 然后就成了求欧拉函数了. #include <iostream> #include <cstring&g ...

  7. BZOJ 2190: [SDOI2008]仪仗队( 欧拉函数 )

    假设C君为(0, 0), 则右上方为(n - 1, n - 1). 一个点(x, y) 能被看到的前提是gcd(x, y) = 1, 所以 answer = ∑ phi(i) * 2 + 2 - 1 ...

  8. 2190: [SDOI2008]仪仗队(欧拉函数)

    2190: [SDOI2008]仪仗队 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3235  Solved: 2089 Description 作 ...

  9. P2158 [SDOI2008] (欧拉函数

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

随机推荐

  1. Beta发布--PSP DAILY软件功能说明书2.0

    一.开发背景 你在完成了一周的软件工程作业后,需要提交一个PSP图表,里面有4项,如下所示: 1.本周PSP表格,包含每项任务的开始.中断.结束.最终时间,格式如下: 2.本周进度条,包含从开始到现在 ...

  2. Daily Scrum (2015/10/30)

    据组员们反映其他组都会有休息时间,所以我和PM讨论把每周5晚上作为日常休息时间,这一天组员们自由阅读.

  3. OO的第一次死亡

    久仰OO大名,总是想着提前做点准备,其实到头来还是什么准备都没有做,所以这学期就是从零开始的面向对象生活,也因此遇到了很多的问题. 第一次作业——多项式加减 第一次作业历来是较为简单的,但是对于面向对 ...

  4. sprint会议1

    昨天:进行第一次站立会议,讨论冲刺阶段,目标,任务认领,制作索引卡. 今天:准备查找安卓APP开发的有关资料,安装有关软件. 遇到的问题:对这方面毫无了解,不知道怎么开始,从哪开始,完全没经验.

  5. 2018软工实践—Beta冲刺(4)

    队名 火箭少男100 组长博客 林燊大哥 作业博客 Beta 冲鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调组内工作 完成软件开发技术文稿 展示GitHub当日代码/文档签入 ...

  6. 软工1816 · Beta冲刺(1/7)

    团队信息 队名:爸爸饿了 组长博客:here 作业博客:here 组员情况 组员1(组长):王彬 过去两天完成了哪些任务 完成beta冲刺阶段的任务安排 整理博客 接下来的计划 & 还剩下哪些 ...

  7. Leetcode题库——4.寻找两个有序数组的中位数

    @author: ZZQ @software: PyCharm @file: findMedianSortedArrays.py @time: 2018/10/10 19:24 说明:给定两个大小为 ...

  8. 【第二周】PSP

    日期 C类别 C内容 S开始时间 E结束时间 I间隔(单位:分钟) T净时间(单位:分钟) 9月8日 编程 结对编程 12:15 13:15 10 50    编程 结对编程  16:35 17:30 ...

  9. json数据进行格式化

    <?php /** Json数据格式化 * @param Mixed $data 数据 * @param String $indent 缩进字符,默认4个空格 * @return JSON */ ...

  10. Struts1 工作流程

    一个老项目的维护 , 需要学习一下 Struts1. struts1运行步骤 1.项目初始化:项目启动时加载 web.xml,struts1 的总控制器 ActionServlet 是一个 Servl ...