CSDN的博客

友键

题目描述

质数方阵是一个\(5×5\)的方阵,每行、每列、两条对角线上的数字可以看作是五位的素数。方格中的行按照从左到右的顺序组成一个素数,而列按照从上到下的顺序。两条对角线也是按照从左到右的顺序来组成。这些素数每一位上的数之和必须相等。 左上角的数字是预先定好的。 一个素数可能在方阵中重复多次。不计含有前导 \(0\) 的五位素数,如\(00003\) 不是五位素数。



给出每一位上的数之和,以及左上角的数字,请输出方阵所有可能的填数方案。

如果不只有一个解,将它们全部输出(按照这 \(25\) 个数字组成的 \(25\) 位数的大小排序)。

输入格式

一行,包括两个被空格分开的整数:每一位上的数之和,以及左上角的数字。

输出格式

对于每一个找到的方案输出 \(5\) 行,每行 \(5\) 个字符,每行可以转化为一个 \(5\) 位的质数。在两组方案中间输出一个空行。如果没有解就单独输出一行 \(NONE\)。

样例

样例输入

11 1

样例输出

11351

14033

30323

53201

13313

11351

33203

30323

14033

33311

13313

13043

32303

50231

13331


不怎么华丽的分割线

这道题是真的水难,暴力中还带着技巧。

总的来说,我的填写方法有点奇特



填写顺序常奇特

这样填是我随便想的,结果过了 (除先填左上到右下)

代码很丑,照着填写顺序思路,代码写的很通俗,只要你不被判断绕晕

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct node
{
int map[10][10];
}ans[110000];
bool cmp(node a,node b)
{
for(int i=0;i<=4;i++)for(int j=0;j<=4;j++)if (a.map[i][j]!=b.map[i][j])return a.map[i][j]<b.map[i][j];
}
int a[10][10],n,k;
bool b[110000];
void bt()
{
k++;for(int i=0;i<=4;i++)for(int j=0;j<=4;j++)ans[k].map[i][j]=a[i][j];
}
void dfs6()
{
for(int i=1;i<=9;i++)
if(a[0][0]+a[0][4]+i<=n&&a[1][1]+a[2][1]+a[3][1]+i<n&&n-i-a[1][1]-a[2][1]-a[3][1]<=9&&!b[i*10000+a[1][1]*1000+a[2][1]*100+a[3][1]*10+n-i-a[1][1]-a[2][1]-a[3][1]])
{
a[0][1]=i,a[4][1]=n-i-a[1][1]-a[2][1]-a[3][1];
for(int j=1;j<=9;j++)
if (a[0][0]+a[0][1]+j+a[0][4]<n&&n-j-a[1][2]-a[2][2]-a[3][2]<=9&&j+a[1][2]+a[2][2]+a[3][2]<n&&n-a[0][0]-a[0][1]-j-a[0][4]<=9&&!b[j*10000+a[1][2]*1000+a[2][2]*100+a[3][2]*10+n-j-a[1][2]-a[2][2]-a[3][2]]&&!b[a[0][0]*10000+a[0][1]*1000+j*100+(n-a[0][0]-a[0][1]-j-a[0][4])*10+a[0][4]])
{
int n42=n-j-a[1][2]-a[2][2]-a[3][2],n03=n-a[0][0]-a[0][1]-j-a[0][4];
if(a[4][0]+a[4][1]+n42+a[4][4]<=n&&n-a[4][0]-a[4][1]-n42-a[4][4]<=9&&n03+a[1][3]+a[2][3]+a[3][3]<=n&&n-n03-a[1][3]-a[2][3]-a[3][3]<=9&&!b[a[4][0]*10000+a[4][1]*1000+n42*100+(n-a[4][0]-a[4][1]-n42-a[4][4])*10+a[4][4]]&&!b[n03*10000+a[1][3]*1000+a[2][3]*100+a[3][3]*10+n-n03-a[1][3]-a[2][3]-a[3][3]])
{
a[0][2]=j,a[4][2]=n42,a[0][3]=n03,a[4][3]=n-a[4][0]-a[4][1]-n42-a[4][4];
bt();
a[0][2]=a[4][2]=a[0][3]=a[4][3]=0;
}
}
a[0][1]=a[4][1]=0;
}
}
void dfs5()
{
for(int i=1;i<=9;i++)
if(a[3][3]+i<=n&&a[0][0]+a[1][0]+a[2][0]+i<n&&n-a[0][0]-a[1][0]-a[2][0]-i<=9&&!b[a[0][0]*10000+a[1][0]*1000+a[2][0]*100+i*10+n-a[0][0]-a[1][0]-a[2][0]-i])
{
a[3][0]=i,a[4][0]=n-a[0][0]-a[1][0]-a[2][0]-i;
for(int j=0;j<=9;j++)
if(a[1][1]+a[2][1]+j<=n&&a[3][0]+a[3][3]+j<=n&&a[4][0]+a[2][2]+a[1][3]+j<n&&n-a[4][0]-j-a[2][2]-a[1][3]<=9&&!b[a[4][0]*10000+j*1000+a[2][2]*100+a[1][3]*10+n-a[4][0]-j-a[2][2]-a[1][3]])
{
int n04=n-a[4][0]-j-a[2][2]-a[1][3];
if(n04+a[1][4]+a[2][4]+a[4][4]<=n&&n-n04-a[1][4]-a[2][4]-a[4][4]<=9&&!b[n04*10000+a[1][4]*1000+a[2][4]*100+(n-n04-a[1][4]-a[2][4]-a[4][4])*10+a[4][4]])
{
int n34=n-n04-a[1][4]-a[2][4]-a[4][4];
if(a[3][0]+j+a[3][3]+n34<=n&&n-a[3][0]-j-a[3][3]-n34<=9&&!b[a[3][0]*10000+j*1000+(n-a[3][0]-j-a[3][3]-n34)*100+a[3][3]*10+n34])
{
a[3][1]=j,a[0][4]=n04,a[3][4]=n34,a[3][2]=n-a[3][0]-j-a[3][3]-n34;
dfs6();
a[3][1]=a[0][4]=a[3][4]=a[3][2]=0;
}
}
}
a[3][0]=a[4][0]=0;
}
}
void dfs4()
{
for(int i=0;i<=9;i++)
if(a[1][1]+i<=n&&a[2][0]+a[2][2]+i<=n)
{
a[2][1]=i;
for(int j=0;j<=9;j++)
if(a[1][3]+j<=n&&a[2][0]+a[2][1]+a[2][2]+j<n&&n-a[2][0]-a[2][1]-a[2][2]-j<=9&&!b[a[2][0]*10000+a[2][1]*1000+a[2][2]*100+j*10+n-a[2][0]-a[2][1]-a[2][2]-j])
{
a[2][3]=j,a[2][4]=n-a[2][0]-a[2][1]-a[2][2]-j;
dfs5();
a[2][3]=a[2][4]=0;
}
a[2][1]=0;
}
}
void dfs3()
{
for(int i=0;i<=9;i++)
if(a[1][0]+a[1][1]+a[1][2]+i<n&&n-a[1][0]-a[1][1]-a[1][2]-i<=9&&a[3][3]+i<=n&&!b[a[1][0]*10000+a[1][1]*1000+a[1][2]*100+i*10+n-a[1][0]-a[1][1]-a[1][2]-i])
{
a[1][3]=i,a[1][4]=n-a[1][0]-a[1][1]-a[1][2]-i;
for(int j=1;j<=9;j++)
if(a[0][0]+a[1][0]+j<=n&&a[2][2]+j<=n)
{
a[2][0]=j;
dfs4();
a[2][0]=0;
}
a[1][3]=a[1][4]=0;
}
}
void dfs2()
{
for(int i=1;i<=9;i++)
if(a[0][0]+i<=n&&a[1][1]+i<=n)
{
a[1][0]=i;
for(int j=0;j<=9;j++)
if(a[1][0]+a[1][1]+j<=n&&a[2][2]+j<=n)
{
a[1][2]=j;
dfs3();
a[1][2]=0;
}
a[1][0]=0;
}
}
void dfs1()
{
for(int i=0;i<=9;i++)
if(a[0][0]+i<=n)
{
a[1][1]=i;
for(int j=0;j<=9;j++)
if(a[0][0]+a[1][1]+j<=n)
{
a[2][2]=j;
for(int g=0;g<=9;g++)
if(a[0][0]+a[1][1]+a[2][2]+g<=n&&n-a[0][0]-a[1][1]-a[2][2]-g<=9&&!b[a[0][0]*10000+a[1][1]*1000+a[2][2]*100+g*10+n-a[0][0]-a[1][1]-a[2][2]-g])
{
a[3][3]=g,a[4][4]=n-a[0][0]-a[1][1]-a[2][2]-g;
dfs2();
a[3][3]=a[4][4]=0;
}
a[2][2]=0;
}
a[1][1]=0;
}
}
int prime[110000],pr=0;
int main()
{
scanf("%d%d",&n,&a[0][0]);//
memset(prime,0,sizeof(prime));
memset(b,false,sizeof(b));
for(int i=2;i<=100000;i++)
{
if(b[i]==false)
{
prime[++pr]=i;
}
for(int j=1;(j<=pr)&& (i*prime[j]<=100000);j++)
{
b[i*prime[j]]=true;
if(i%prime[j]==0) break;
}
}
dfs1();
if(!k)printf("NONE\n");
else
{
sort(ans+1,ans+k+1,cmp);
for(int l=1;l<=k;l++)
{
for(int i=0;i<=4;i++)
{
for(int j=0;j<=4;j++)printf("%d",ans[l].map[i][j]);
printf("\n");
}
printf("\n");
}
}
return 0;
}

愿各位能活着看到这

(阿门)

loj.ac:#10024. 「一本通 1.3 练习 3」质数方阵的更多相关文章

  1. 「LOJ#10051」「一本通 2.3 例 3」Nikitosh 和异或(Trie

    题目描述 原题来自:CODECHEF September Challenge 2015 REBXOR 1​​≤r​1​​<l​2​​≤r​2​​≤N,x⨁yx\bigoplus yx⨁y 表示 ...

  2. LOJ#10117. 「一本通 4.1 练习 2」简单题

    LOJ#10117. 「一本通 4.1 练习 2」简单题 题目描述 题目来源:$CQOI 2006$ 有一个$n$个元素的数组,每个元素初始均为$0$.有$m$条指令,要么让其中一段连续序列数字反转— ...

  3. LOJ#10064. 「一本通 3.1 例 1」黑暗城堡

    LOJ#10064. 「一本通 3.1 例 1」黑暗城堡 题目描述 你知道黑暗城堡有$N$个房间,$M$条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设$D_i$为如果 ...

  4. 「LOJ#10056」「一本通 2.3 练习 5」The XOR-longest Path (Trie

    #10056. 「一本通 2.3 练习 5」The XOR-longest Path 题目描述 原题来自:POJ 3764 给定一棵 nnn 个点的带权树,求树上最长的异或和路径. 输入格式 第一行一 ...

  5. LOJ #10131 「一本通 4.4 例 2」暗的连锁

    LOJ #10131 「一本通 4.4 例 2」暗的连锁 给一棵 \(n\) 个点的树加上 \(m\) 条非树边 , 现在需要断开一条树边和一条非树边使得图不连通 , 求方案数 . $n \le 10 ...

  6. 「LOJ#10042」「一本通 2.1 练习 8」收集雪花 (map

    题目描述 不同的雪花往往有不同的形状.在北方的同学想将雪花收集起来,作为礼物送给在南方的同学们.一共有 n 个时刻,给出每个时刻下落雪花的形状,用不同的整数表示不同的形状.在收集的过程中,同学们不希望 ...

  7. 「LOJ#10043」「一本通 2.2 例 1」剪花布条 (KMP

    题目描述 原题来自:HDU 2087 一块花布条,里面有些图案,另有一块直接可用的小饰条,里面也有一些图案.对于给定的花布条和小饰条,计算一下能从花布条中尽可能剪出几块小饰条来呢? 输入格式 输入数据 ...

  8. 「LOJ#10015」「一本通 1.2 练习 2」扩散(并查集

    题目描述 一个点每过一个单位时间就会向 444 个方向扩散一个距离,如图所示:两个点 a .b 连通,记作 e(a,b),当且仅当 a .b的扩散区域有公共部分.连通块的定义是块内的任意两个点 u.v ...

  9. #10042. 「一本通 2.1 练习 8」收集雪花 || 离散化 || 双指针法 || C++ || LOJ

    题目:#10042. 「一本通 2.1 练习 8」收集雪花 看到网上没有这道题的题解,所以写一下. 要标记数字是否存在,看到x<=1e9,所以考虑用离散化,然后开一个last数组,last[i] ...

随机推荐

  1. iOS 开发 Tips

    1.MVVM 的优点 MVVM 兼容 MVC,可以先创建一个简单的 View Model,再慢慢迁移. MVVM 使得 app 更容易测试,因为 View Model 部分不涉及 UI. MVVM 最 ...

  2. [c/c++] programming之路(26)、结构体

    一.初始化字符串 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdlib.h> #include&l ...

  3. C# readonly与const区别

    静态常量:是指编译器在编译时候会对常量进行解析,并将常量的值替换成初始化的那个值. 动态常量的值则是在运行的那一刻才获得的,编译器编译期间将其标示为只读常量,而不用常量的值代替,这样动态常量不必在声明 ...

  4. 图像旋转、伸缩的自写matlab实现

    一.图像的旋转 今天的代码不是自己写的,缺少一些时间.但是认认真真推导了一下旋转的公式,代码的思想与原博博主一致,致敬! 愚以为,自己来实现图像旋转算法的关键点有二:其一,确定旋转后的图像边界.其二, ...

  5. Linux mint 下开发设置

    切换thinpad Home-Pgup End-Pgdn sudo vim ~/.Xmodmap keysym Prior = Home keysym Next = End 禁用鼠标中间粘帖功能 su ...

  6. 理解 OAuth2.0

    文章转载于阮一峰老师的博客:http://www.ruanyifeng.com/blog/2014/05/oauth_2_0.html 参考文章:https://learnku.com/article ...

  7. 打包发布Python模块或程序,安装包

    Python模块.扩展和应用程序可以按以下几种形式进行打包和发布: python setup.py获取帮助的方式 python setup.py --help python setup.py --he ...

  8. vue-cli3.0

    vue-cli 都到 3.0.3 了,所以是时候玩转一下 vue-cli 3 的新特性. 1. vue-cli 3.0.3 vue cli 的包名称由 vue-cli 改成了 @vue/cli. 如果 ...

  9. Manjaro安装后,应该做的操作,仅作为自己备份使用,如有参考不懂,请留言咨询,或Q609916691

    家目录下,通用文件夹名称中英文互转: --(1)中文->英文 export LANG=en_US.UTF-8 xdg-user-dirs-update --force --(2)英文->中 ...

  10. 【安卓基础】ImageView与EditText联动实现隐藏与显示密码

    项目中经常会有这样的需求,在密码输入框的右边有一个小图标,点击就切换显示和隐藏密码. 其实这里需求实现起来是比较容易的,主要考虑是复用问题,因为登陆.注册.修改密码界面都会有这样的情景,如果每个界面都 ...