题目背景

BB地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响。但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车。换句话说,只有连接着两个重建完成的村庄的公路才能通车,只能到达重建完成的村庄。

题目描述

给出BB地区的村庄数NN,村庄编号从00到N-1N−1,和所有MM条公路的长度,公路是双向的。并给出第ii个村庄重建完成的时间t_iti​,你可以认为是同时开始重建并在第t_iti​天重建完成,并且在当天即可通车。若t_iti​为00则说明地震未对此地区造成损坏,一开始就可以通车。之后有QQ个询问(x, y, t)(x,y,t),对于每个询问你要回答在第tt天,从村庄xx到村庄y的最短路径长度为多少。如果无法找到从xx村庄到yy村庄的路径,经过若干个已重建完成的村庄,或者村庄xx或村庄yy在第t天仍未重建完成 ,则需要返回-1−1。

输入输出格式

输入格式:

第一行包含两个正整数N,MN,M,表示了村庄的数目与公路的数量。

第二行包含NN个非负整数t_0, t_1,…, t_{N-1}t0​,t1​,…,tN−1​,表示了每个村庄重建完成的时间,数据保证了t_0 ≤ t_1 ≤ … ≤ t_{N-1}t0​≤t1​≤…≤tN−1​。

接下来MM行,每行33个非负整数i, j, wi,j,w,ww为不超过1000010000的正整数,表示了有一条连接村庄ii与村庄jj的道路,长度为ww,保证i≠ji≠j,且对于任意一对村庄只会存在一条道路。

接下来一行也就是M+3M+3行包含一个正整数QQ,表示QQ个询问。

接下来QQ行,每行33个非负整数x, y, tx,y,t,询问在第tt天,从村庄xx到村庄yy的最短路径长度为多少,数据保证了tt是不下降的。

输出格式:

共QQ行,对每一个询问(x, y, t)(x,y,t)输出对应的答案,即在第tt天,从村庄xx到村庄yy的最短路径长度为多少。如果在第t天无法找到从xx村庄到yy村庄的路径,经过若干个已重建完成的村庄,或者村庄x或村庄yy在第tt天仍未修复完成,则输出-1−1。

输入输出样例

输入样例#1: 复制

4 5
1 2 3 4
0 2 1
2 3 1
3 1 2
2 1 4
0 3 5
4
2 0 2
0 1 2
0 1 3
0 1 4
输出样例#1: 复制

-1
-1
5
4

说明

对于30\%30%的数据,有N≤50N≤50;

对于30\%30%的数据,有t_i= 0ti​=0,其中有20\%20%的数据有t_i = 0ti​=0且N>50N>50;

对于50\%50%的数据,有Q≤100Q≤100;

对于100\%100%的数据,有N≤200N≤200,M≤N \times (N-1)/2M≤N×(N−1)/2,Q≤50000Q≤50000,所有输入数据涉及整数均不超过100000100000。

很明显是floyd算法  每次时间一到就以该城市为点开始缩边

本以为时间都是乱序的  还想了半天

连提问都是升序给好了的

全部都排序好了

#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);--i)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define ll long long
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
//////////////////////////////////
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f const int N=+; int mp[N][N]; int ans[N][N];
int time1[N];
int main()
{
int n,m;
RII(n,m);
rep(i,,n)
{
RI(time1[i]);
}
rep(i,,n)
rep(j,,n)
if(i==j)
mp[i][j]=;
else mp[i][j]=inf; rep(i,,m)
{
int a,b,c;
RIII(a,b,c);
a++;b++;
mp[a][b]=c;
mp[b][a]=c;
}
int k;
RI(k);
int now=;
while(k--)
{
int s,t,T;RIII(s,t,T);
while(T>=time1[now]&&now<=n)
{
rep(i,,n)
rep(j,,n)
mp[i][j]=min(mp[i][j],mp[i][now]+mp[now][j]);
now++;
}
s++;t++;
if(T<time1[s]||T<time1[t]||mp[s][t]==inf)
cout<<-<<endl;
else cout<<mp[s][t]<<endl;
}
}

P1119 灾后重建 floyd的更多相关文章

  1. [Luogu P1119] 灾后重建 (floyd)

    题面 传送门:https://www.luogu.org/problemnew/show/P1119 Solution 这题的思想很巧妙. 首先,我们可以考虑一下最暴力的做法,对每个时刻的所有点都求一 ...

  2. 洛谷P1119 灾后重建[Floyd]

    题目背景 B地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响.但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车.换句话说,只有连接着两个重建完成的村庄的公路才能 ...

  3. 洛谷P1119 灾后重建 Floyd + 离线

    https://www.luogu.org/problemnew/show/P1119 真是有故事的一题呢 半年前在宁夏做过一道类似的题,当时因为我的愚昧痛失了金牌. 要是现在去肯定稳稳的过,真是生不 ...

  4. 洛谷P1119灾后重建——Floyd

    题目:https://www.luogu.org/problemnew/show/P1119 N很小,考虑用Floyd: 因为t已经排好序,所以逐个加点,Floyd更新即可: 这也给我们一个启发,如果 ...

  5. 洛谷 P1119 灾后重建 最短路+Floyd算法

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 总结 题面 题目链接 P1119 灾后重建 题目描述 B地区在地震过后,所有村 ...

  6. 洛谷——P1119 灾后重建

    P1119 灾后重建 题目背景 B地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响.但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车.换句话说,只有连接着两个重 ...

  7. 洛谷 P1119 灾后重建(Floyd)

    嗯... 题目链接:https://www.luogu.org/problem/P1119 这道题是一个Floyd的很好的题目,在Floyd的基础上加一点优化: 中转点k在这里不能暴力枚举,否则会超时 ...

  8. P1119 灾后重建(floyd进阶)

    思路:这道题看n的范围很小(n<=200),显然就用floyd可以解决的问题,但又并不是简单的floyd算法,还是需要一些小小的变化.一开始我的思路是先跑一次弗洛伊德最短路,这样子显然复杂度很高 ...

  9. Luogu P1119 灾后重建 【floyd】By cellur925

    题目传送门 这道题我们很容易想到对于每次询问,都跑一遍最短路(spfa,虽然他已经死了).只需在松弛的时候加入当前相关的点是否已经修好的判断,果不其然的TLE了4个点. (然鹅我第一次用spfa跑的时 ...

随机推荐

  1. Tomcat系列(7)——Tomcat类加载机制

    1. 核心部分 1. 类加载器: 通过一个类的全限定名来获取描述此类的二进制字节流. 对于任意一个类,都需要由加载他的类加载器和这个类本身一同确立其在Java虚拟机中的唯一性,每一个类加载器,都拥有一 ...

  2. Spring Cloud微服务实战:手把手带你整合eureka&zuul&feign&hystrix

    转载自:https://www.jianshu.com/p/cab8f83b0f0e 代码实现:https://gitee.com/ccsoftlucifer/springCloud_Eureka_z ...

  3. 半导体知识讲解:IC基础知识及制造工艺流程

    本文转载自微信公众号 - 中国半导体论坛  , 链接 https://mp.weixin.qq.com/s/VhCsVGyEDrgc2XJ0jxLvaA

  4. Aras简单报表

    1.编辑Report对象类的窗体Report_Tab_Report,将xsl_stylesheet放到窗体上 2.新建报表 3.将编辑好的XSLT复制到xsl_stylesheet中. <xsl ...

  5. HtmlWebpackPlugin用的html的ejs模板文件中如何使用条件判断

    折腾: [已解决]给react-hot-boilerplate中的index.html换成用HtmlWebpackPlugin自动生成html 期间,已经有了思路了,但是不知道如何在ejs的html中 ...

  6. gitlab 随笔

    输入: $ git init $ git add . $ git commit -m 'init commit' 绿色部分为gitlab网页的项目创建后下面的ssh路径,也可以通过查看gitlab网页 ...

  7. SpringBoot 上传文件夹

    前端代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF ...

  8. C++入门篇十一

    单例对象:为了让类只有一个实例,实例不需要自己释放掉 不管创建多少个实例对象进行访问,访问的都是同一个值 #include "pch.h" #include <iostrea ...

  9. python脚本--mysql数据库升级、备份

    在公司经常要做测试环境的升级.备份.维护:升级后台的应用,不可避免要进行数据库的升级与备份,花了一个上午琢磨了一个脚本分享给大家. ToB的业务,在做环境维护的时候,有初始化环境和增量升级的环境,在测 ...

  10. java ReentrantLock 公平锁 非公平锁 测试

    package reentrantlock; import java.util.ArrayList; import java.util.concurrent.locks.ReentrantLock; ...