What is Machine Learning

定义

Arthur Samuel:Field of study that gives computers the ability to learn without being explicitly programmed(在没有被明确编程的情况下,赋予计算机学习能力的学习领域)。

Tom Mitchell:A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E(计算机程序从经验E中学习在某一性能度量P下解决某一任务T,因为经验E,它在解决T时的性能,以P来衡量,有所提升)。

Machine Learning 分类:

  • Supervised Learning(监督学习)
    从给定的训练数据集中学习出一个函数,当新的数据到来时,可以根据这个函数来预测结果。监督学习的训练集要求是输入和输出,也可以说是特征和目标。训练集中的目标是人为标注的。常见的监督学习算法包括回归和分类。

  • Unsupervised Learning(无监督学习)
    无监督学习与监督学习相比,训练集没有人为标注的结果。常见的无监督学习算法有聚类等。

  • Semi-supervised Learning(半监督学习)
    这是一种介于监督学习与无监督学习之间的方法。

  • Transfer Learning(迁移学习)
    将已经训练好的模型参数迁移到新的模型来帮助新模型训练数据集。

  • Reinforcement Learning(增强学习)
    通过观察周围环境来学习。每个动作都会对环境有所影响,学习对象根据观察到的周围环境的反馈来做出判断。

传统的机器学习算法有以下几种:线性回归模型、logistic回归模型、k-临近算法、决策树、随机森林、支持向量机、人工神经网络、EM算法概率图模型等。

初识Machine Learning的更多相关文章

  1. Introduction - What is machine learning

    摘要: 本文是吴恩达 (Andrew Ng)老师<机器学习>课程,第一章<绪论:初识机器学习>中第2课时<什么是机器学习?>的视频原文字幕.为本人在视频学习过程中逐 ...

  2. 【Machine Learning】KNN算法虹膜图片识别

    K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  3. 【Machine Learning】Python开发工具:Anaconda+Sublime

    Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...

  4. 【Machine Learning】机器学习及其基础概念简介

    机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  5. 【Machine Learning】决策树案例:基于python的商品购买能力预测系统

    决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本 ...

  6. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  7. [Machine Learning] Active Learning

    1. 写在前面 在机器学习(Machine learning)领域,监督学习(Supervised learning).非监督学习(Unsupervised learning)以及半监督学习(Semi ...

  8. [Machine Learning & Algorithm]CAML机器学习系列2:深入浅出ML之Entropy-Based家族

    声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine ...

  9. machine learning基础与实践系列

    由于研究工作的需要,最近在看机器学习的一些基本的算法.选用的书是周志华的西瓜书--(<机器学习>周志华著)和<机器学习实战>,视频的话在看Coursera上Andrew Ng的 ...

随机推荐

  1. 脚本kafka-configs.sh用法解析

    引用博客来自李志涛:https://www.cnblogs.com/lizherui/p/12275193.html 前言介绍 网络上针对脚本kafka-configs.sh用法,也有一些各种文章,但 ...

  2. mysql SQL优化琐记之索引

    equal最好了,其次in,最后是range !=  <>  这类非操作尽量不用,它会转换为range.>都是范围查询 复合索引有左匹配原则,(clo_a,clo_b)相当建立了两个 ...

  3. 微服务监控druid sql

    参考该文档 保存druid的监控记录 把日志保存的关系数据数据库(mysql,oracle等) 或者nosql数据库(redis,芒果db等) 保存的时候可以增加微服务名称标识好知道是哪个微服务的sq ...

  4. rest framework-认证&权限&限制-长期维护

    ###############   自定义token认证    ############### 表 class User(models.Model): name=models.CharField(ma ...

  5. python之接口自动化测试框架

    梳理python+unittest接口自动化测试框架的思路: 1.确定目录: cases:存放测试用例的py文件:config:存放一些数据库,环境地址等固定不变的信息: core:核心的文件, ca ...

  6. PolarDB阿里初赛问题记录 PolarDB 阿里 中间件 比赛 性能 工程手册

    Contents 这篇纯碎是碎碎念记录. 每个value都是4KB,总共最多会写6400W个value,算下来就是64 * 1000 * 1000 * 4 * 1024 Bytes ≈ 256G. 每 ...

  7. springboot学习笔记:10.springboot+atomikos+mysql+mybatis+druid+分布式事务

    前言 上一篇文章我们整合了springboot+druid+mybatis+mysql+多数据源: 本篇文章大家主要跟随你们涛兄在上一届基础上配置一下多数据源情况下的分布式事务: 首先,到底啥是分布式 ...

  8. 使json或字典输出更美观

    这里是选取的项目中部分代码,但是关于json或字典格式化输出的代码是完整的def send_post(url, data): 使用json.dumps()后数据被转成了str类型,如果还要对该数据像字 ...

  9. 吴裕雄--天生自然python学习笔记:WEB数据抓取与分析

    Web 数据抓取技术具有非常巨大的应用需求及价值, 用 Python 在网页上收集数据,不仅抓取数据的操作简单, 而且其数据分析功能也十分强大. 通过 Python 的时lib 组件中的 urlpar ...

  10. synchronized互斥锁实例解析

    目录 synchronized互斥锁实例解析 1.互斥锁基础使用:防止多个线程同时访问对象的synchronized方法. 1.1.多个线程调用同一个方法 1.2.多个线程多个锁,升级为类锁 2.线程 ...