hive提前过滤重要性
hive提前过滤
create table sospdm.tmp_yinfei_test_01
(
id string
)
partitioned by (statis_date string)
; create table sospdm.tmp_yinfei_test_02
(
id string
)
partitioned by (statis_date string)
; select t1.*
from tmp_yinfei_test_01 t1
left join tmp_yinfei_test_02 t2
on t1.id=t2.id
where t1.statis_date='' and t2.statis_date=''
;
select t1.*
from tmp_yinfei_test_01 t1
left join tmp_yinfei_test_02 t2
on t1.id=t2.id and t1.statis_date='' and t2.statis_date=''
;
select t1.*
from
(
select * from tmp_yinfei_test_01 where statis_date=''
) t1
left join
(
select * from tmp_yinfei_test_02 where statis_date=''
) t2
on t1.id=t2.id
;
=========================test1===================================== explain select t1.*
from tmp_yinfei_test_01 t1
left join tmp_yinfei_test_02 t2
on t1.id=t2.id
where t1.statis_date='' and t2.statis_date=''
; hive> explain select t1.*
> from tmp_yinfei_test_01 t1
> left join tmp_yinfei_test_02 t2
> on t1.id=t2.id
> where t1.statis_date='' and t2.statis_date=''
> ;
OK
STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-0 depends on stages: Stage-1 STAGE PLANS:
Stage: Stage-1
Map Reduce
Map Operator Tree:
TableScan
alias: t1
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
Filter Operator
predicate: (statis_date = '') (type: boolean)
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
Reduce Output Operator
key expressions: id (type: string)
sort order: +
Map-reduce partition columns: id (type: string)
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
TableScan
alias: t2
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
Reduce Output Operator
key expressions: id (type: string)
sort order: +
Map-reduce partition columns: id (type: string)
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
value expressions: statis_date (type: string)
Reduce Operator Tree:
Join Operator
condition map:
Left Outer Join0 to 1
keys:
0 id (type: string)
1 id (type: string)
outputColumnNames: _col0, _col6
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
Filter Operator
predicate: (_col6 = '') (type: boolean)
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
Select Operator
expressions: _col0 (type: string), '' (type: string)
outputColumnNames: _col0, _col1
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
File Output Operator
compressed: true
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Stage: Stage-0
Fetch Operator
limit: -1
Processor Tree:
ListSink Time taken: 0.399 seconds, Fetched: 58 row(s) 结论:t2表会扫全表
=========================test2=====================================
explain select t1.*
from tmp_yinfei_test_01 t1
left join tmp_yinfei_test_02 t2
on t1.id=t2.id and t1.statis_date='' and t2.statis_date=''
;
STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-0 depends on stages: Stage-1 STAGE PLANS:
Stage: Stage-1
Map Reduce
Map Operator Tree:
TableScan
alias: t1
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
Reduce Output Operator
key expressions: id (type: string)
sort order: +
Map-reduce partition columns: id (type: string)
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
value expressions: statis_date (type: string)
TableScan
alias: t2
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
Filter Operator
predicate: (statis_date = '') (type: boolean)
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
Reduce Output Operator
key expressions: id (type: string)
sort order: +
Map-reduce partition columns: id (type: string)
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
Reduce Operator Tree:
Join Operator
condition map:
Left Outer Join0 to 1
filter predicates:
0 {(VALUE._col0 = '')}
1
keys:
0 id (type: string)
1 id (type: string)
outputColumnNames: _col0, _col1
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
File Output Operator
compressed: true
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Stage: Stage-0
Fetch Operator
limit: -1
Processor Tree:
ListSink
结论:t1表会扫全表
=========================test3=====================================
explain select t1.*
from
(
select * from tmp_yinfei_test_01 where statis_date=''
) t1
left join
(
select * from tmp_yinfei_test_02 where statis_date=''
) t2
on t1.id=t2.id
;
STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-0 depends on stages: Stage-1 STAGE PLANS:
Stage: Stage-1
Map Reduce
Map Operator Tree:
TableScan
alias: tmp_yinfei_test_01
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
Filter Operator
predicate: (statis_date = '') (type: boolean)
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
Select Operator
expressions: id (type: string), '' (type: string)
outputColumnNames: _col0, _col1
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
Reduce Output Operator
key expressions: _col0 (type: string)
sort order: +
Map-reduce partition columns: _col0 (type: string)
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
value expressions: _col1 (type: string)
TableScan
alias: tmp_yinfei_test_02
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
Filter Operator
predicate: (statis_date = '') (type: boolean)
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
Select Operator
expressions: id (type: string)
outputColumnNames: _col0
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
Reduce Output Operator
key expressions: _col0 (type: string)
sort order: +
Map-reduce partition columns: _col0 (type: string)
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
Reduce Operator Tree:
Join Operator
condition map:
Left Outer Join0 to 1
keys:
0 _col0 (type: string)
1 _col0 (type: string)
outputColumnNames: _col0, _col1
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
File Output Operator
compressed: true
Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Stage: Stage-0
Fetch Operator
limit: -1
Processor Tree:
ListSink
hive提前过滤重要性的更多相关文章
- hive -- 协同过滤sql语句
hive -- 协同过滤sql语句 数据: *.3g.qq.com|腾讯应用宝|应用商店 *.91rb.com|91手机助手|应用商店 *.app.qq.com|腾讯应用宝|应用商店 *.haina. ...
- STREAMING HIVE流过滤 官网例子 注意中间用的py脚本
Simple Example Use Cases MovieLens User Ratings First, create a table with tab-delimited text file f ...
- hive条件过滤
where 过滤 %代表任意个字符,_代表一个字符; \\ 转移字符.\\_代表下划线
- Hive计算最大连续登陆天数
目录 一.背景 二.算法 1. 第一步:排序 2. 第二步:第二列与第三列做日期差值 3. 第三步:按第二列分组求和 4. 第四步:求最大次数 三.扩展(股票最大涨停天数) 强哥说他发现了财富密码,最 ...
- hadoop 数据倾斜
数据倾斜是指,map /reduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为某一个key的条数比其他key多很多(有 ...
- orcFile split和读数据原理总结(hive0.13)
http://blog.csdn.net/zhaorongsheng/article/details/72903431 官网关于orcfile的介绍 背景 Hive的rcfile格式已经使用多年,但是 ...
- DataSkew 数据倾斜
date: 2020-04-21 19:38:00 updated: 2020-04-24 10:26:00 DataSkew 数据倾斜 1. Hive 里的数据倾斜 1.1 null值 空值 尽量提 ...
- MySQL之谓词下推
MySQL之谓词下推 什么是谓词 在SQL中,谓词就是返回boolean值即true或者false的函数,或是隐式转换为boolean的函数.SQL中的谓词主要有 LKIE.BETWEEN.IS NU ...
- 大数据SQL中的Join谓词下推,真的那么难懂?
听到谓词下推这个词,是不是觉得很高大上,找点资料看了半天才能搞懂概念和思想,借这个机会好好学习一下吧. 引用范欣欣大佬的博客中写道,以前经常满大街听到谓词下推,然而对谓词下推却总感觉懵懵懂懂,并不明白 ...
随机推荐
- Codeforces 1039D You Are Given a Tree [根号分治,整体二分,贪心]
洛谷 Codeforces 根号分治真是妙啊. 思路 考虑对于单独的一个\(k\)如何计算答案. 与"赛道修建"非常相似,但那题要求边,这题要求点,所以更加简单. 在每一个点贪心地 ...
- java多线程快速入门(二十)
1.Java.util的线程安全工具类 Vector(线程安全) ArrayList(线程不安全) HashTable(线程安全) HashMap(线程不安全) 2.将线程不安全集合变为线程安全集合 ...
- 二.Rsync备份服务
自己动手部署一遍 期中架构-第二章-备份服务笔记====================================================================== 01. 课 ...
- js 判断输入的内容是否是整数
需求简介:列表有一列排序,其值只能是整数,不能是小数,在js中判断,并给出提示 解决思路:在js中先获取表单的值,然后用isNaN,然后查一下怎么把小数排除在外.我靠( ‵o′)凸,这只能算是半路把! ...
- react 使用draft.js富文本编辑器
参照网址:https://www.cnblogs.com/3body/p/6224010.html 参看网址:https://www.cnblogs.com/mosquito18/p/9787816. ...
- Ubuntu 进入、退出命令行的快捷键
进入: Ctrl+Alt+F1 退出: Ctrl+Alt+F7(或者 Alt+F7) 进入命令行窗口:Ctrl+Alt+T
- 数据库和linux对大小写的区分
- MySQL查看库表的大小
MySQL数据库空间使用情况查询 如果想知道MySQL数据库中每个表占用的空间.表记录的行数的话,可以打开MySQL的 information_schema 数据库.在该库中有一个 TABLES 表, ...
- php归档格式:phar文件详解(创建、使用、解包还原提取)
转载一篇,突然遇到一个冷知识,phar的东东,貌似和jar.war是一种鬼. 重点使用一下下面这个东东,就能解包出来东东了. $phar = new Phar('lib/yunke.phar', 0) ...
- python--使用队列结构来模拟共享打印机等候时间
按书里的样例抄的. 可以看到,将打印速度由第分钟5页提高到10页之后, 每个学生提交打印任务到打印完成的时间明显缩短. =========================== 在计算机科学实验室里考虑 ...