传送门(bzoj)

传送门(洛谷)

可以说这道也是一个板子题

由于题中是三个人需经过的路径最短

就会有一点点不太一样

那么

就两两求LCA

这样之后就会出现两种状况

一、所得到的三个LCA是相等的

  那毫无疑问真正的LCA的值就是这个值

二、若不是第二种情况

  那必然会出现

  有且仅有一个LCA的值与令两个LCA的值不同

第二种情况正确性(不严格的)证明:

显然1和2的LCA是4

2和3的LCA是5

1和3的LCA也是5

既然2和3的LCA(5)的深度4大

那么也可把2和3的LCA看作是4和3的LCA

那么1和3的LCA也是5了

所以必定会有两个LCA是相同的

而且相同的那个一定是最高的

(因为 4和3的LCA是5 = 1和3的LCA是5 同时2 和3的LCA是5)

所以

找到了两个相同的

真正的LCA就是另一个

因为让3从5走到4

显然要比让1和2一起4走到5

同样都是要走4和5之间的相同的路径

只是方向不同而已

让1和2两个人一起走显然要比只要3走到长

所以真正的LCA是(与另外两个相同的LCA)不同的那个LCA,而不是相同的LCA了

然而当我信心满满写完的时候

我有sd了

需要减掉(即重复加到结果中的)被我简简单单的认为只是真正的LCA的深度*3

但是显然不是的啊

那这把是不是好了捏?

然而我输出的数不对啊

这可怎么回事??

我方了

(在各种瞎调试之下)

我把每一个处理fa[ ][ ]数组的循环次数从20加到的25

奇迹般地好了

(这是为什么,明明样例数据很小的啊,怎么会影响到的呢??)

跪求大佬们指点

这把终于过样例了

于是我开开心心的去提交了

结果re了

(又一脸懵)

于是我发现我sd的fa[ ][ ]数组忘再开大一点了

而且

由于是起初是无向图

所以

需要正反都要加边

但是我的数组只是一次加边的大小

既然就gg了

什么时候可以不犯这种低级错误啊qwq...

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = ;
int hed[maxn * ],nxt[maxn * ],to[maxn * ],dep[maxn * ];
bool vis[maxn];
int fa[maxn][];
int n,m,cnt,rot;
inline int read()
{
int sum = ,p = ;
char ch = getchar();
while(ch < '' || ch > '')
{
if(ch == '-')
p = -;
ch = getchar();
}
while(ch >= '' && ch <= '')
{
(sum *= )+= ch - '';
ch = getchar();
}
return sum * p;
}
void add(int x,int y)
{
nxt[++cnt] = hed[x];
to[cnt] = y;
hed[x] = cnt;
}
void dfs(int o,int k)
{
dep[o] = dep[k] + ;
for(int i = ;i<= ;i++)
fa[o][i+] = fa[fa[o][i]][i];
for(int i = hed[o];i;i = nxt[i])
{
if(to[i] == k)
continue;
fa[to[i]][] = o;
dfs(to[i],o);
}
}
int lca(int x,int y)
{
if(dep[x] < dep[y])
swap(x,y);
for(int i = ;i >= ;i--)
{
if(dep[fa[x][i]] >= dep[y])
x = fa[x][i];
if(x == y)
return x;
}
for(int i = ;i >= ;i--)
{
if(fa[x][i] != fa[y][i])
{
x = fa[x][i];
y = fa[y][i];
}
}
return fa[x][];
}
int main()
{
n = read(),m = read();
for(int i = ;i < n;i++)
{
int a = read(),b = read();
add(a,b);
add(b,a);
vis[b] = ;
}
for(int i = ;i <= n;i++)
{
if(!vis[i])
{
rot = i;
break;
}
}
dep[rot] = ;
dfs(rot,);
for(int i = ;i <= m;i++)
{
int a = read(),b = read(),c = read();
int o = lca(a,b);
int p = lca(c,b);
int q = lca(a,c);
int u;
if(o == p)
u = q;
else
if(o == q)
u = p;
else
u = o;
printf("%d %d\n",u,dep[a] + dep[b] + dep[c] - dep[o] - dep[p] - dep[q]);
}
return ;
}

bzoj-1787-洛谷-4281(LCA板子题)的更多相关文章

  1. BZOJ 1832、1787 洛谷 4281 [AHOI2008]紧急集合

    [题解] 题目要求找到一个集合点,使3个给定的点到这个集合点的距离和最小,输出集合点的编号以及距离. 设三个点为A,B,C:那么我们可以得到Dis=dep[A]+dep[B]+dep[C]-dep[L ...

  2. [BZOJ 3039&洛谷P4147]玉蟾宫 题解(单调栈)

    [BZOJ 3039&洛谷P4147]玉蟾宫 Description 有一天,小猫rainbow和freda来到了湘西张家界的天门山玉蟾宫,玉蟾宫宫主蓝兔盛情地款待了它们,并赐予它们一片土地. ...

  3. 洛谷 SP14932 LCA - Lowest Common Ancestor

    洛谷 SP14932 LCA - Lowest Common Ancestor 洛谷评测传送门 题目描述 A tree is an undirected graph in which any two ...

  4. 洛谷 P2791 幼儿园篮球题

    洛谷 P2791 幼儿园篮球题 https://www.luogu.org/problemnew/show/P2791 我喜欢唱♂跳♂rap♂篮球 要求的是:\(\sum_{i=0}^kC_m^iC_ ...

  5. 洛谷 P2220 [HAOI2012]容易题 数论

    洛谷 P2220 [HAOI2012]容易题 题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数 ...

  6. Guard Duty (medium) Codeforces - 958E2 || (bzoj 2151||洛谷P1792) 种树 || 编译优化

    https://codeforces.com/contest/958/problem/E2 首先求出N个时刻的N-1个间隔长度,问题就相当于在这些间隔中选K个数,相邻两个不能同时选,要求和最小 方法1 ...

  7. BZOJ 1901 洛谷 P2617 ZOJ 2112 Dynamic Rankings

    以下时空限制来自zoj Time limit 10000 ms Memory limit 32768 kB OS Linux Source Online Contest of Christopher' ...

  8. bzoj 4816: 洛谷 P3704: [SDOI2017]数字表格

    洛谷很早以前就写过了,今天交到bzoj发现TLE了. 检查了一下发现自己复杂度是错的. 题目传送门:洛谷P3704. 题意简述: 求 \(\prod_{i=1}^{N}\prod_{j=1}^{M}F ...

  9. bzoj 1014: 洛谷 P4036: [JSOI2008]火星人

    题目传送门:洛谷P4036. 题意简述: 有一个字符串,支持插入字符,修改字符. 每次需要查询两个后缀的LCP长度. 最终字符串长度\(\le 100,\!000\),修改和询问的总个数\(\le 1 ...

随机推荐

  1. es6 语法 (类与对象)

    { // 基本定义和生成实例 class Parent{ constructor(name='mukewang'){ this.name=name; } } let v_parent1=new Par ...

  2. Tars 服务调服务

    1,创建一个 tars 服务工程 2,把需要调用的服务的 客户端接口文件 拷贝到当前服务 3,构建通信器 CommunicatorConfig 调用,如果是 springboot 开发客户端可以使用注 ...

  3. Salesforce 数据备份和恢复小知识

    数据备份的类型 在Salesforce中可以使用多种API进行数据备份,它们是: REST API SOAP API Buik API Metadata API 数据备份有三种选择: 完全备份(Ful ...

  4. Windows 不能在本地计算机启动 OracleDBConsoleorcl的问题解决方法

    解决步骤如下: 1.开始->运行cmd 2.执行 emctl start dbconsole 输入:C:\Documents and Settings\xcl>emctl start db ...

  5. NDK时间测量

    在NDK中测量时间,有四种方法. LINUX系统方法 gettimeofday 以秒和微秒的形式返回自从Epoch(1970-01-01 00:00:00 +0000 (UTC))时间以来,系统已经经 ...

  6. 使用 float 存储小数?

    很多程序员就会使用 float 类型来存储小数.sql 的 float 类型和其他大多数编程语言的 float 类型一样, 根据IEEE 754 标准使用二进制格式编码实数数据. 但是很多程序员并不清 ...

  7. 基于Python3的漏洞检测工具 ( Python3 插件式框架 )

    目录 Python3 漏洞检测工具 -- lance screenshot requirements 关键代码 usage documents Any advice or sugggestions P ...

  8. [20180926]神奇的规避ORA-01795方法.txt

    [20180926]神奇的规避ORA-01795方法.txt --//大家知道in里面的值限制1000个值,如果超出报ORA-01795错误. D:\> ooerr 0179501795, 00 ...

  9. Spring MVC 实现文件的上传和下载 (八)

    完整的项目案例: springmvc.zip 目录 SpringMVC 中,文件的上传,是通过 MultipartResolver 实现的. 所以,如果要实现文件的上传,只要在 spring-mvc. ...

  10. 洗礼灵魂,修炼python(91)-- 知识拾遗篇 —— pymysql模块之python操作mysql增删改查

    首先你得学会基本的mysql操作语句:mysql学习 其次,python要想操作mysql,靠python的内置模块是不行的,而如果通过os模块调用cmd命令虽然原理上是可以的,但是还是不太方便,那么 ...