UVA818-Cutting Chains(二进制枚举+dfs判环)
Problem UVA818-Cutting Chains
Accept:393 Submit:2087
Time Limit: 3000 mSec
Problem Description
What a find! Anna Locke has just bought several links of chain some of which may be connected. They are made from zorkium, a material that was frequently used to manufacture jewelry in the last century, but is not used for that purpose anymore. It has its very own shine, incomparable to gold or silver, and impossible to describe to anyone who has not seen it first hand. Anna wants the pieces joined into a single end-to-end strand of chain. She takes the links to a jeweler who tells her that the cost of joining them depends on the number of chain links that must be opened and closed. In order to minimize the cost, she carefully calculates the minimum number of links that have to be opened to rejoin all the links into a single sequence. This turns out to be more difficult than she at first thought. You must solve this problem for her.
Input
The input consists of descriptions of sets of chain links, one set per line. Each set is a list of integers delimited by one or more spaces. Every description starts with an integer n, which is the number of chain links in the set, where 1 ≤ n ≤ 15. We will label the links 1, 2, ..., n. The integers following n describe which links are connected to each other. Every connection is specified by a pair of integers i,j where 1 ≤ i,j ≤ n and i ̸= j, indicating that chain links i and j are connected, i.e., one passes through the other. The description for each set is terminated by the pair ‘-1 -1’, which should not be processed. The input is terminated by a description starting with n = 0. This description should not be processed and will not contain data for connected links.
Output
For each set of chain links in the input, output a single line which reads
Set N: Minimum links to open is M
where N is the set number and M is the minimal number of links that have to be opened and closed such that all links can be joined into one single chain.
Sample Input
Sample Ouput
Set 1: Minimum links to open is 1
Set 2: Minimum links to open is 2
Set 3: Minimum links to open is 1
Set 4: Minimum links to open is 1
Set 5: Minimum links to open is 1
题解:一看到n不超过15,向二进制的方向想是很自然的,顺着思路就出来了,暴力枚举情况,关键在于如何判断一个情况是成立的首先判环是肯定的,然后就是判断断开的个数是否大于等于连通分支的个数-1。这两点都很好想,容易忽略的就是如果一个环的分支数大于2也是不行的。这个虽然不太容易一下想到,但是样例有提示(良心样例),也不是什么困难的问题,代码都是套路。
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#define INF 0x3f3f3f3f using namespace std; const int maxn = ;
int n;
int gra[maxn][maxn];
int vis[maxn]; bool dfs(const int sit,int fa,int u){
vis[u] = -;
for(int v = ;v < n;v++){
if(!gra[u][v] || vis[v]== || v==fa || !(sit&(<<v))) continue;
if(vis[v] < ) return false;
if(!vis[v] && !dfs(sit,u,v)) return false;
}
vis[u] = ;
return true;
} bool check(const int sit,int &res){
memset(vis,,sizeof(vis));
for(int u = ;u < n;u++){
if(!(sit&(<<u))) continue;
if(!vis[u]){
if(!dfs(sit,u,u)) return false;
res++;
}
} for(int u = ;u < n;u++){
if(!(sit&(<<u))) continue;
int cnt = ;
for(int v = ;v < n;v++){
if(gra[u][v] && sit&(<<v)) cnt++;
if(cnt > ) return false;
}
}
return true;
} int iCase = ; int main()
{
while(~scanf("%d",&n) && n){
int x,y;
memset(gra,,sizeof(gra));
while(scanf("%d%d",&x,&y) && (x!=- && y!=-)){
x--,y--;
gra[x][y] = gra[y][x] = ;
}
int Min = INF;
for(int i = (<<n)-;i >= ;i--){
int res = ;
if(check(i,res)){
int cnt = ;
for(int j = ;j < n;j++){
if(!(i&(<<j))) cnt++;
}
if(res- <= cnt) Min = min(Min,cnt);
if(Min == ) break;
}
}
printf("Set %d: Minimum links to open is %d\n",iCase++,Min);
}
return ;
}
UVA818-Cutting Chains(二进制枚举+dfs判环)的更多相关文章
- Atcoder Grand Contest 032C(欧拉回路,DFS判环)
#include<bits/stdc++.h>using namespace std;int vis[100007];vector<int>v[100007];vector&l ...
- cf1278D——树的性质+并查集+线段树/DFS判环
昨天晚上本来想认真打一场的,,结果陪女朋友去了.. 回来之后看了看D,感觉有点思路,结果一直到现在才做出来 首先对所有线段按左端点排序,然后用并查集判所有边是否联通,即遍历每条边i,和前一条不覆盖它的 ...
- cf374C Inna and Dima dfs判环+求最长链
题目大意是有一个DIMA四种字母组成的矩阵,要在矩阵中找最长的DIMADIMADIMA……串,连接方式为四方向连接,问最长能找到多少DIMA.字母可以重复访问,如果DIMA串成环,即可以取出无限长的D ...
- 洛谷2444(Trie图上dfs判环)
要点 并没问具体方案,说明很可能不是构造. 思考不断读入这个文本串,然后中间不出现某些文法的串.啊,这就是个自动机. 将不合法串使用ac自动机构成一个Trie图,我们需要的字符串就是在这个自动机上无限 ...
- CodeForces-1217D (拓扑排序/dfs 判环)
题意 https://vjudge.net/problem/CodeForces-1217D 请给一个有向图着色,使得没有一个环只有一个颜色,您需要最小化使用颜色的数量. 思路 因为是有向图,每个环两 ...
- UVA-818 Cutting Chains (位压缩+暴力搜索)
题目大意:一种环能打开和闭合.现在有n(1<=n<=15)个编号为1~n的环错综复杂的连接着,要打开一些环重新连接使这n个环能构成一条链,问最少需要打开几次环可达到目的? 题目分析:用二进 ...
- 2018 计蒜之道复赛 贝壳找房魔法师顾问(并查集+dfs判环)
贝壳找房在遥远的传奇境外,找到了一个强大的魔法师顾问.他有 22 串数量相同的法力水晶,每个法力水晶可能有不同的颜色.为了方便起见,可以将每串法力水晶视为一个长度不大于 10^5105,字符集不大于 ...
- HDU 5215 Cycle(dfs判环)
题意 题目链接 \(T\)组数据,给出\(n\)个点\(m\)条边的无向图,问是否存在一个奇环/偶环 Sol 奇环比较好判断吧,直接判是否是二分图就行了.. 偶环看起来很显然就是如果dfs到一个和他颜 ...
- BZOJ 1064 假面舞会(NOI2008) DFS判环
此题,回想Sunshinezff学长给我们出的模拟题,原题啊有木有!!此处吐槽Sunshinezff爷出题不人道!! 不过也感谢Sunshinezff学长的帮助,我才能做出来.. 1064: [Noi ...
随机推荐
- JSJ——java基本概念一
Java曾以什么优点吸引你走上程序员这条不归路? 友好的语法.面向对象.内存管理和最棒的跨平台可移植性.write-once/run-anywhere 当然,只有我们真正投身入java才发现有bug要 ...
- Ubuntu 安装 chrome
依次执行命令: sudo wget https://repo.fdzh.org/chrome/google-chrome.list -P /etc/apt/sources.list.d/ wget - ...
- 记录微信小程序报错 Unexpected end of JSON input;at pages/flow/checkout page getOrderData function
微信小程序报错 Unexpected end of JSON input;at pages/flow/checkout page getOrderData function 这个报错是在将数组对象通过 ...
- IE6不兼容问题
IE6不兼容问题 一.选择器兼容问题 1.交集选择器从IE7以上兼容(div.special): 2.儿子选择器(>):IE7开始兼容,IE6不兼容. 3.序选择器(first ...
- 二进制安装 kubernetes 1.12(二) - 安装docker, 部署Flannel网络
在 node 节点上安装 docker 参考 https://www.cnblogs.com/klvchen/p/8468855.html Flannel 工作原理: 部署Flannel网络 在 ma ...
- js 分页插件(jQuery)
参考:http://www.jb51.net/article/117191.htm 侵删 css 部分 @charset "utf=8"; *{ box-sizing: borde ...
- JavaScript 变量及类型
在JavaScript中,所有的number都是以64位浮点型数据来存储的.所有的编程语言,包括js,对浮点型数据的精度都很难确定. var a = 0.1 + 0.2; console.log(a ...
- 广州.net俱乐部12月份ABP框架活动场地征集、志愿者征集、合作讲师\副讲师征集
大家好,我在<被低估的.net(上) - 微软MonkeyFest 2018广州分享会活动回顾>一文中提到,我将在12月份搞一场ABP框架活动,现向大家征集活动场地.志愿者.合作讲师\副讲 ...
- web-worker 的使用
JavaScript采用的是单线程模式,它每次也只能执行一个事件,所以它在加载大量的事件的时候会比较慢. 而web-worker的作用就是给JavaScript提供一个多线程的模式. 注意的是 web ...
- 性能测试 查看Android APP 帧数FPS的方法
(下述需要先安装eclipse,不然无法抓包) 1.保证手机与PC连接是正常的 2.打开手机“设置”→“开发者选项”(没有开发者选项就点击“关于手机”“版本号”连续点击就会出现开发者选项了).找到监控 ...