原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4589.html

题目传送门 - BZOJ4589

题意

  有 $n$ 堆石子,每一堆石子的取值为 $2$ ~ $m$ 之间的素数。

  问在所有不同的取值中,先手必败的方案总数。

  答案对 $10^9+7$ 取模。

  $n\leq 10^9,m\leq 50000$

题解

  第一次写 FWT

  感觉 FWT 比 FFT 简单多了。

  下面进入正题。

  首先,我们再回顾一下 Nim游戏 中先手必败的情况:所有数的异或和为 $0$ 。具体证明自行百度,这里不加赘述。

  我们构造一个多项式 $A$ ,如果 $i$ 为素数,那么 $A(i)=1$ ,否则 $A(i)=0$ 。

  定义卷积如下形式:

$$C(k)=\sum_{i\ XOR\ j=k} A(i)B(j)$$

  于是我们看到,如果 $n=2$ ,那么答案为 $A^2(0)$ 。

  类似地,原题答案为 $A^n(0)$ 。

  注意一下上面的那个卷积式可以用 FWT 来做。

  我们先 FWT 一下,类似于多项式点值相乘,异或卷积的“点值”也可以自己相乘,于是每一个值都直接取其 $n$ 次方,然后再 IFWT 一下就可以得到目标多项式了。

代码

#include <bits/stdc++.h>
using namespace std;
const int N=1<<16,mod=1e9+7,inv2=(mod+1)/2;
int Pow(int x,int y){
if (!y)
return 1;
int xx=Pow(x,y/2);
xx=1LL*xx*xx%mod;
if (y&1)
xx=1LL*xx*x%mod;
return xx;
}
bool check(int x){
for (int i=2;i*i<=x;i++)
if (x%i==0)
return 0;
return x>1;
}
int n,m,k,A[N];
void FWT(int a[],int n,int flag){
for (int d=1;d<n;d<<=1)
for (int i=0;i<n;i+=(d<<1))
for (int j=0;j<d;j++){
int x=a[i+j],y=a[i+j+d];
a[i+j]=(x+y)%mod;
a[i+j+d]=(x-y+mod)%mod;
if (flag<0){
a[i+j]=1LL*a[i+j]*inv2%mod;
a[i+j+d]=1LL*a[i+j+d]*inv2%mod;
}
}
}
int main(){
while (~scanf("%d%d",&k,&m)){
for (n=1;n<=m;n<<=1);
for (int i=0;i<n;i++)
A[i]=(check(i)&&i<=m)?1:0;
FWT(A,n,1);
for (int i=0;i<n;i++)
A[i]=Pow(A[i],k);
FWT(A,n,-1);
printf("%d\n",A[0]);
}
return 0;
}

  

BZOJ4589 Hard Nim FWT 快速幂 博弈的更多相关文章

  1. BZOJ4589: Hard Nim(FWT 快速幂)

    题意 题目链接 Sol 神仙题Orzzzz 题目可以转化为从\(\leqslant M\)的质数中选出\(N\)个\(xor\)和为\(0\)的方案数 这样就好做多了 设\(f(x) = [x \te ...

  2. 【bzoj4589】Hard Nim FWT+快速幂

    题目大意:给你$n$个不大于$m$的质数,求有多少种方案,使得这$n$个数的异或和为$0$.其中,$n≤10^9,m≤10^5$. 考虑正常地dp,我们用$f[i][j]$表示前$i$个数的异或和为$ ...

  3. [bzoj4589]Hard Nim(FWT快速沃尔什变化+快速幂)

    题面:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 题意 求选恰好n个数,满足每个数都是不大于m的质数,且它们的异或和为0的方案数. 解法 ...

  4. 【51Nod1773】A国的贸易 FWT+快速幂

    题目描述 给出一个长度为 $2^n$ 的序列,编号从0开始.每次操作后,如果 $i$ 与 $j$ 的二进制表示只差一位则第 $i$ 个数会加上操作前的第 $j$ 个数.求 $t$ 次操作后序列中的每个 ...

  5. BZOJ4589 Hard Nim(快速沃尔什变换FWT)

    这是我第一道独立做出来的FWT的题目,所以写篇随笔纪念一下. (这还要纪念,我太弱了) 题目链接: BZOJ 题目大意:两人玩nim游戏(多堆石子,每次可以从其中一堆取任意多个,不能操作就输).$T$ ...

  6. bzoj 4589: Hard Nim【线性筛+FWT+快速幂】

    T了两次之后我突然意识到转成fwt形式之后,直接快速幂每次乘一下最后再逆回来即可,并不需要没此次都正反转化一次-- 就是根据nim的性质,先手必输是所有堆个数异或和为0,也就变成了一个裸的板子 #in ...

  7. bzoj4589: Hard Nim fwt

    题意:求n个m以内的素数亦或起来为0的方案数 题解:fwt板子题,先预处理素数,把m以内素数加一遍(下标),然后fwt之后快速幂即可,在ifwt之后a[0]就是答案了 /*************** ...

  8. BZOJ4589 Hard Nim(快速沃尔什变换模板)

    终于抽出时间来学了学,比FFT不知道好写到哪里去. #include <cstdio> typedef long long ll; ,p=1e9+; int k,m,n,a[N],pi[N ...

  9. BZOJ4589 Hard Nim(博弈+FWT)

    即使n个数的异或为0.如果只有两堆,将质数筛出来设为1,做一个异或卷积即可.显然这个东西满足结合律,多堆时直接快速幂.可以在点值表示下进行. #include<iostream> #inc ...

随机推荐

  1. 常用的ORM框架

    现在,很多项目使用ORM的框架构架实现数据持久层,下面列举一些常用的ORM框架有,后续分节介绍. Java:Hibernate和Mybatis(前身iBatis) .Net:EF6与EFCore.Da ...

  2. UniversalImageLoader(异步加载大量图片)

    UniversalImageLoader是用于加载图片的一个开源项目,UniversalImageLoader是实现异步加载大量图片的源码和例子,包括缓存.硬盘缓存.容错机制等技术.在其项目介绍中是这 ...

  3. 时间日期date/cal

    命令: date 作用: 查看下系统时间 使用: date 命令: cal 对应英文: calendar 作用: 查看日历 选项: -y:可查看一年的日历 使用: cal cal -y

  4. MYSQL修改字段

    当字段为空则插入0,不为空则原来的值  UPDATE t_pm_scheduleSET lesson_room_id1 = IFNULL(lesson_room_id1, 0), lesson_roo ...

  5. iOS9 新功能:Support Universal Links,iOS10 openUrl新函数

    先看官方文档:https://developer.apple.com/library/ios/documentation/General/Conceptual/AppSearch/UniversalL ...

  6. Bootstrap 固定底部导航栏菜单

    直接上代码: <!DOCTYPE html> <html> <head> <meta http-equiv="content-type" ...

  7. LuoGu P1939 【模板】矩阵加速(数列)

    板子传送门 矩阵快速幂学完当然要去搞一搞矩阵加速啦 (矩阵加速相对于矩阵快速幂来说就是多了一个构造矩阵的过程) 关于怎样来构造矩阵,这位大佬讲的很好呢 构造出矩阵之后,我们再去用矩阵快速幂乘出来,取[ ...

  8. vuforia unity 识别图片出模型

    ARCamera设置: 然后设置ImageTarge

  9. Confluence 6 查看空间活动需要注意的地方

    希望查看空间的活动情况,Confluence Usage Stats  插件必须在系统中启用.这个插件启用的话将会导致系统的性能问题.针对大型的 Confluence 站点,这个插件在默认情况下是禁用 ...

  10. Confluence 6 配置默认语言界面

    Confluence 6 配置默认语言使用的界面. https://www.cwiki.us/display/CONFLUENCEWIKI/Choosing+a+Default+Language