Tarjan算法模板(USACO03FALL受欢迎的牛)
#include<bits/stdc++.h>
using namespace std;
const int N = 10010, M = 50010;
int n, m;
int h[N], e[M], ne[M], idx;
int dfn[N], low[N], timestamp;
int stk[N], top;
bool in_stk[N];
int id[N], scc_cnt, Size[N];
int dout[N];
void add(int a, int b){
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
void tarjan(int u){
dfn[u] = low[u] = ++ timestamp;
stk[ ++ top] = u, in_stk[u] = true;
for (int i = h[u]; i != -1; i = ne[i]){
int j = e[i];
if (!dfn[j]){
tarjan(j);
low[u] = min(low[u], low[j]);
}
else if (in_stk[j]) low[u] = min(low[u], dfn[j]);
}
if (dfn[u] == low[u]){
++ scc_cnt;
int y;
do{
y = stk[top -- ];
in_stk[y] = false;
id[y] = scc_cnt;
Size[scc_cnt] ++ ;
}while (y != u);
}
}
int main(){
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
while (m -- ){
int a, b;
scanf("%d%d", &a, &b);
add(a, b);
}
for (int i = 1; i <= n; i ++ )
if (!dfn[i])
tarjan(i);
for (int i = 1; i <= n; i ++ )
for (int j = h[i]; ~j; j = ne[j]){
int k = e[j];
int a = id[i], b = id[k];
if (a != b) dout[a] ++ ;
}
int zeros = 0, sum = 0;
for (int i = 1; i <= scc_cnt; i ++ )
if (!dout[i]){
zeros ++ ;
sum += Size[i];
if (zeros > 1){
sum = 0;
break;
}
}
printf("%d\n", sum);
return 0;
}
Tarjan算法模板(USACO03FALL受欢迎的牛)的更多相关文章
- 缩点Tarjan算法解析+[题解]受欢迎的牛
(注:我在网上找了一些图,希望原博主不要在意,谢谢,(。☉౪ ⊙。)) 首先来了解什么是强连通分量 有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向 ...
- Tarjan 算法&模板
Tarjan 算法 一.算法简介 Tarjan 算法一种由Robert Tarjan提出的求解有向图强连通分量的算法,它能做到线性时间的复杂度. 我们定义: 如果两个顶点可以相互通达,则称两个顶点强连 ...
- 【tarjan】BZOJ 1051:受欢迎的牛
1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3134 Solved: 1642[Submit][Sta ...
- Tarjan算法(模板)
算法思想: 首先要明确强连通图的概念,一个有向图中,任意两个点互相可以到达:什么是强连通分量?有向图的极大连通子图叫强连通分量. 给一个有向图,我们用Tarjan算法把这个图的子图(在这个子图内,任意 ...
- HDU 2586 ( LCA/tarjan算法模板)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 题意:n个村庄构成一棵无根树,q次询问,求任意两个村庄之间的最短距离 思路:求出两个村庄的LCA,d ...
- tarjan算法模板
终于能自己完整的打下来 #include<cstdio> #include<cstring> #include<iostream> #include<vect ...
- 【强联通分量缩点】【Tarjan】bzoj1051 [HAOI2006]受欢迎的牛
就是看是否有一些点,从其他任何点出发都可到达 定理:有向无环图中唯一出度为0的点,一定可以由任何点出发均可达. 所以缩点,若出度为零的点(强联通分量)唯一,则答案为该强联通分量中点的度数. 若不唯一, ...
- poj1236 Tarjan算法模板 详解
思想: 做一遍DFS,用dfn[i]表示编号为i的节点在DFS过程中的访问序号(也可以叫做开始时间)用low[i]表示i节点DFS过程中i的下方节点所能到达的开始时间最早的节点的开始时间.初始时dfn ...
- 有向图的强联通分量 Tarjan算法模板
//白书 321页 #include<iostream> #include<cstdio> #include<cstring> #include<vector ...
随机推荐
- Python接口自动化——文件上传/下载接口
〇.前言 文件上传/下载接口与普通接口类似,但是有细微的区别. 如果需要发送文件到服务器,例如:上传文档.图片.视频等,就需要发送二进制数据,上传文件一般使用的都是 Content-Type: mul ...
- Jedis的基本操作
jedis jedis 是 redis推荐的java客户端.通过Jedis我们可以很方便地使用java代码的方式,对redis进行操作.jedis使用起来比较简单,它的操作方法与redis命令相类似. ...
- 第一阶段:Java基础之控制结构
1.顺序结构 按照顺序控制结构运行,即语句从上到下,从左到右 2.选择结构 if..else..语句 switch..case..语句 3.循环结构 while循环 do...while & ...
- spring-xml实现aop-通知的种类
如果本代码有疑问,请访问spring-aop快速入门或者spring-aop动态代理技术(底层分析) 1.导入aop的相关坐标 <dependency> <groupId>or ...
- Java 8 学习记录
Java 8 学习记录 官方文档 https://docs.oracle.com/javase/8/ https://docs.oracle.com/javase/8/docs/index.html ...
- 想减少代码量,快设置一个有感知的 Aware Spring Bean
摘要:正常情况下,Spring 中的 Bean 对 Spring 是无感知的,Spring 框架提供了这种扩展能力,能让一个 bean 成为有感知的. 本文分享自华为云社区<有感知的 Aware ...
- 通过循环按行顺序为一个5×5的二维数组a赋1到25的自然数,然后输出该数组。试编程。
- Codeforces Round #719 (Div. 3) C. Not Adjacent Matrix
地址 Problem - C - Codeforces 题意 每个格子,该格子和相邻的格子的值不能相同 题解 思维题, 先从1~n输出奇数,再输出偶数 代码 #include <iostream ...
- partOne测试收获总结
测试收获总结 执行类中构造多个方法,将各个功能分解出来,将大的,复杂的问题转化成小的,简单的问题,来进行处理,正所谓复杂问题简单化,简单问题流程化.大道至简编程精益.现总结编程中的一些问题,①在J ...
- java高级用法之:JNA类型映射应该注意的问题
目录 简介 String Buffers,Memory,数组和Pointer 可变参数 总结 简介 JNA提供JAVA类型和native类型的映射关系,但是这一种映射关系只是一个大概的映射,我们在实际 ...