摘要:本文讲述图像金字塔知识,了解专门用于图像向上采样和向下采样的pyrUp()和pyrDown()函数。

本文分享自华为云社区《[Python图像处理] 二十一.图像金字塔之图像向下取样和向上取样》,作者:eastmount。

一.图像金字塔

图像金字塔是指由一组图像且不同分别率的子图集合,它是图像多尺度表达的一种,以多分辨率来解释图像的结构,主要用于图像的分割或压缩。一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。如图6-11所示,它包括了四层图像,将这一层一层的图像比喻成金字塔。图像金字塔可以通过梯次向下采样获得,直到达到某个终止条件才停止采样,在向下采样中,层级越高,则图像越小,分辨率越低。

生成图像金字塔主要包括两种方式——向下取样、向上取样。在图6-11中,将图像G0转换为G1、G2、G3,图像分辨率不断降低的过程称为向下取样;将G3转换为G2、G1、G0,图像分辨率不断增大的过程称为向上取样。

二.图像向下取样

在图像向下取样中,使用最多的是高斯金字塔。它将对图像Gi进行高斯核卷积,并删除原图中所有的偶数行和列,最终缩小图像。其中,高斯核卷积运算就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值(权重不同)经过加权平均后得到。常见的3×3和5×5高斯核如下:

高斯核卷积让临近中心的像素点具有更高的重要度,对周围像素计算加权平均值,如图6-12所示,其中心位置权重最高为0.4。

显而易见,原始图像Gi具有M×N个像素,进行向下取样之后,所得到的图像Gi+1具有M/2×N/2个像素,只有原图的四分之一。通过对输入的原始图像不停迭代以上步骤就会得到整个金字塔。注意,由于每次向下取样会删除偶数行和列,所以它会不停地丢失图像的信息。

在OpenCV中,向下取样使用的函数为pyrDown(),其原型如下所示:

dst = pyrDown(src[, dst[, dstsize[, borderType]]])

  • src表示输入图像,
  • dst表示输出图像,和输入图像具有一样的尺寸和类型
  • dstsize表示输出图像的大小,默认值为Size()
  • borderType表示像素外推方法,详见cv::bordertypes

实现代码如下所示:

# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('nv.png')
#图像向下取样
r = cv2.pyrDown(img)
#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrDown', r)
cv2.waitKey()
cv2.destroyAllWindows()

输出结果如图6-13所示,它将原始图像压缩成原图的四分之一。

多次向下取样的代码如下:

# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('nv.png')
#图像向下取样
r1 = cv2.pyrDown(img)
r2 = cv2.pyrDown(r1)
r3 = cv2.pyrDown(r2)
#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrDown1', r1)
cv2.imshow('PyrDown2', r2)
cv2.imshow('PyrDown3', r3)
cv2.waitKey()
cv2.destroyAllWindows()

输出结果如图所示:

三.图像向上取样

在图像向上取样是由小图像不断放图像的过程。它将图像在每个方向上扩大为原图像的2倍,新增的行和列均用0来填充,并使用与“向下取样”相同的卷积核乘以4,再与放大后的图像进行卷积运算,以获得“新增像素”的新值。如图6-15所示,它在原始像素45、123、89、149之间各新增了一行和一列值为0的像素。

在OpenCV中,向上取样使用的函数为pyrUp(),其原型如下所示:

dst = pyrUp(src[, dst[, dstsize[, borderType]]])

  • src表示输入图像,
  • dst表示输出图像,和输入图像具有一样的尺寸和类型
  • dstsize表示输出图像的大小,默认值为Size()
  • borderType表示像素外推方法,详见cv::bordertypes

实现代码如下所示:

# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('lena.png')
#图像向上取样
r = cv2.pyrUp(img)
#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrUp', r)
cv2.waitKey()
cv2.destroyAllWindows()

输出结果如图6-16所示,它将原始图像扩大为原图像的四倍。

多次向上取样的代码如下:

# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('lena2.png')
#图像向上取样
r1 = cv2.pyrUp(img)
r2 = cv2.pyrUp(r1)
r3 = cv2.pyrUp(r2)
#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrUp1', r1)
cv2.imshow('PyrUp2', r2)
cv2.imshow('PyrUp3', r3)
cv2.waitKey()
cv2.destroyAllWindows()

输出结果如图6-17所示,每次向上取样均为上次图像的四倍,但图像的清晰度会降低。

希望这篇基础性文章对您有所帮助,如果有错误或不足之处,请海涵!

感恩能与大家在华为云遇见!

参考文献:

点击关注,第一时间了解华为云新鲜技术~

跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样的更多相关文章

  1. 跟我学Python图像处理丨基于灰度三维图的图像顶帽运算和黑帽运算

    摘要:本篇文章结合灰度三维图像讲解图像顶帽运算和图像黑猫运算,通过Python调用OpenCV函数实现. 本文分享自华为云社区<[Python图像处理] 十三.基于灰度三维图的图像顶帽运算和黑帽 ...

  2. 跟我学Python图像处理丨何为图像的灰度非线性变换

    摘要:本文主要讲解灰度线性变换,基础性知识希望对您有所帮助. 本文分享自华为云社区<[Python图像处理] 十六.图像的灰度非线性变换之对数变换.伽马变换>,作者:eastmount . ...

  3. 跟我学Python图像处理丨图像特效处理:毛玻璃、浮雕和油漆特效

    摘要:本文讲解常见的图像特效处理,从而让读者实现各种各样的图像特殊效果,并通过Python和OpenCV实现. 本文分享自华为云社区<[Python图像处理] 二十四.图像特效处理之毛玻璃.浮雕 ...

  4. 跟我学Python图像处理丨获取图像属性、兴趣ROI区域及通道处理

    摘要:本篇文章主要讲解Python调用OpenCV获取图像属性,截取感兴趣ROI区域,处理图像通道. 本文分享自华为云社区<[Python图像处理] 三.获取图像属性.兴趣ROI区域及通道处理 ...

  5. 跟我学Python图像处理丨带你掌握傅里叶变换原理及实现

    摘要:傅里叶变换主要是将时间域上的信号转变为频率域上的信号,用来进行图像除噪.图像增强等处理. 本文分享自华为云社区<[Python图像处理] 二十二.Python图像傅里叶变换原理及实现> ...

  6. 跟我学Python图像处理丨傅里叶变换之高通滤波和低通滤波

    摘要:本文讲解基于傅里叶变换的高通滤波和低通滤波. 本文分享自华为云社区<[Python图像处理] 二十三.傅里叶变换之高通滤波和低通滤波>,作者:eastmount . 一.高通滤波 傅 ...

  7. Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  8. Python 图像处理 OpenCV (5):图像的几何变换

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  9. Python 图像处理 OpenCV (6):图像的阈值处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

随机推荐

  1. 一文搞懂 Netty 发送数据全流程 | 你想知道的细节全在这里

    欢迎关注公众号:bin的技术小屋,如果大家在看文章的时候发现图片加载不了,可以到公众号查看原文 本系列Netty源码解析文章基于 4.1.56.Final版本 在<Netty如何高效接收网络数据 ...

  2. vue Module parse failed: Unexpected token You may need an appropriate loader to handle this file type

    1.错误截图: 2.错误原因:webpack 原生只支持 js 文件类型,及 es5 的语法 3.解决方法:在webpack.config.js中,增加以下配置 module: { rules: [ ...

  3. e.printStackTrace() 原理的分析

    e.printStackTrace(); 先查看下源码 如图片中1所示,使用的是 PrintStreamOrWriter public void printStackTrace() { printSt ...

  4. shell查询prometheus数据

    #shell查询prometheus数据 shell使用curl调用HTTP API执行PromQL /api/v1/query查询某一时刻的数据 查询条件PromSQL复杂时, 传入接口/api/v ...

  5. 使用uart串口接收模块接收信号,控制led灯闪烁

    功能描述: 使用遵循uart协议的接收模块接收控制信号,用来控制led的闪烁. 设计输入: 1.uart输入信号 2.时钟信号 3.复位信号 4.led信号 设计思路: 总体上:前面已经写了串口接收模 ...

  6. 聊聊 Redis 是如何进行请求处理

    转载请声明出处哦~,本篇文章发布于luozhiyun的博客:https://www.luozhiyun.com/archives/674 本文使用的Redis 5.0源码 感觉这部分的代码还是挺有意思 ...

  7. .net6与英雄联盟邂逅之——根据官方LCU API制作游戏助手

    看了网上很多自己开发的英雄联盟的小助手工具,当时苦于没有api,自己也想做一个.后来发现了其实拳头本身就提供了LCU API在客户端运行的时候会暴露出来. 现在我们就来了解下工具的实现. 查询数据:h ...

  8. 什么是WordPress

    首先,假设您没有WordPress的经验: 我将从基础开始. 在本教程中,我将回答问题:"什么是WordPress?" 在这篇文章中,我将说明您可以在哪里获得WordPress以及 ...

  9. 清北学堂 2020 国庆J2考前综合强化 Day3

    目录 1. 题目 T1 石头剪刀布 题目描述 Sol T2 铺地毯 题目描述 Sol T3 数列游戏 题目描述 Sol T4 数星星 题目描述 Sol 2. 算法 -- 动态规划 1. 概述 2. 线 ...

  10. 2537-springsecurity系列--关于session的管理2-session缓存和共享

    版本信息 <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring ...