Coursera 学习笔记|Machine Learning by Standford University - 吴恩达
/ 20220404 Week 1 - 2 /
Chapter 1 - Introduction
1.1 Definition
- Arthur Samuel
The field of study that gives computers the ability to learn without being explicitly programmed. - Tom Mitchell
A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.
1.2 Concepts
1.2.1 Classification of Machine Learning
- Supervised Learning 监督学习:given a labeled data set; already know what a correct output/result should look like
- Regression 回归:continuous output
- Classification 分类:discrete output
- Unsupervised Learning 无监督学习:given an unlabeled data set or an data set with the same labels; group the data by ourselves
- Clustering 聚类:group the data into different clusters
- Non-Clustering 非聚类
- Others: Reinforcement Learning, Recommender Systems...
1.2.2 Model Representation
Training Set 训练集
\[\begin{matrix}
x^{(1)}_1&x^{(1)}_2&\cdots&x^{(1)}_n&&y^{(1)}\\
x^{(2)}_1&x^{(2)}_2&\cdots&x^{(2)}_n&&y^{(2)}\\
\vdots&\vdots&\ddots&\vdots&&\vdots\\
x^{(m)}_1&x^{(m)}_2&\cdots&x^{(m)}_n&&y^{(m)}
\end{matrix}\]符号说明
\(m=\) the number of training examples 训练样本的数量 - 行数
\(n=\) the number of features 特征数量 - 列数
\(x=\) input variable/feature 输入变量/特征
\(y=\) output variable/target variable 输出变量/目标变量
\((x^{(i)}_j,y^{(i)})\) :第\(j\)个特征的第 \(i\) 个训练样本,其中 \(i=1, ..., m\),\(j=1, ..., n\)
1.2.3 Cost Function 代价函数
1.2.4 Gradient Descent 梯度下降
Chapter 2 - Linear Regression 线性回归
x_0&x^{(1)}_1&x^{(1)}_2&\cdots&x^{(1)}_n&&y^{(1)}\\
x_0&x^{(2)}_1&x^{(2)}_2&\cdots&x^{(2)}_n&&y^{(2)}\\
\vdots&\vdots&\vdots&\ddots&\vdots&&\vdots\\
x_0&x^{(m)}_1&x^{(m)}_2&\cdots&x^{(m)}_n&&y^{(m)}\\
\\
\theta_0&\theta_1&\theta_2&\cdots&\theta_n&&
\end{matrix}\]
2.1 Linear Regression with One Variable 单元线性回归
Hypothesis Function
\[h_{\theta}(x)=\theta_0+\theta_1x
\]Cost Function - Square Error Cost Function 平方误差代价函数
\]
Goal
\[\min_{(\theta_0,\theta_1)}J(\theta_0,\theta_1)
\]
2.2 Multivariate Linear Regression 多元线性回归
Hypothesis Function
\[\theta=
\left[
\begin{matrix}
\theta_0\\
\theta_1\\
\vdots\\
\theta_n
\end{matrix}
\right],\
x=
\left[
\begin{matrix}
x_0\\
x_1\\
\vdots\\
x_n
\end{matrix}
\right]\]\[\begin{aligned}h_\theta(x)&=\theta_0+\theta_1x_1+\theta_2x_2+\cdots+\theta_nx_n\\
&=\theta^Tx
\end{aligned}\]Cost Function
\[J(\theta^T)=\frac{1}{2m}\displaystyle\sum_{i=1}^m(h_{\theta}(x^{(i)})-y^{(i)})^2
\]Goal
\[\min_{\theta^T}J(\theta^T)
\]
2.3 Algorithm Optimization
2.3.1 Gradient Descent 梯度下降法
- 算法过程
Repeat until convergence(simultaneous update for each \(j=1, ..., n\))
\theta_j
&:=\theta_j-\alpha{\partial\over\partial\theta_j}J(\theta^T)\\
&:=\theta_j-\alpha{1\over{m}}\displaystyle\sum_{i=1}^m(h_{\theta}(x^{(i)})-y^{(i)})x^{(i)}_j
\end{aligned}\]
- Feature Scaling 特征缩放
对每个特征 \(x_j\) 有$$x_j={{x_j-\mu_j}\over{s_j}}$$
其中 \(\mu_j\) 为 \(m\) 个特征 \(x_j\) 的平均值,\(s_j\) 为 \(m\) 个特征 \(x_j\) 的范围(最大值与最小值之差)或标准差。 - Learning Rate 学习率
2.3.2 Normal Equation(s) 正规方程(组)
令
\begin{matrix}
x_0&x^{(1)}_1&x^{(1)}_2&\cdots&x^{(1)}_n\\
x_0&x^{(2)}_1&x^{(2)}_2&\cdots&x^{(2)}_n\\
\vdots&\vdots&\vdots&\ddots&\vdots\\
x_0&x^{(m)}_1&x^{(m)}_2&\cdots&x^{(m)}_n\\
\end{matrix}
\right],\
y=\left[
\begin{matrix}
y^{(1)}\\
y^{(2)}\\
\vdots\\
y^{(m)}\\
\end{matrix}
\right]\]
其中 \(X\) 为 \(m\times(n+1)\) 维矩阵,\(y\) 为 \(m\) 维的列向量。则
\]
如果 \(X^TX\) 不可逆(noninvertible),可能是因为:
- Redundant features 冗余特征:存在线性相关的两个特征,需要删除其中一个;
- 特征过多,如 \(m\leq n\):需要删除一些特征,或对其进行正规化(regularization)处理。
2.4 Polynomial Regression 多项式回归
If a linear \(h_\theta(x)\) can't fit the data well, we can change the behavior or curve of \(h_\theta(x)\) by making it a quadratic, cubic or square root function(or any other form).
e.g.
\(h_{\theta}(x)=\theta_0+\theta_1x_1+\theta_2x_1^2,\ x_2=x_1^2\)
\(h_{\theta}(x)=\theta_0+\theta_1x_1+\theta_2x_1^2+\theta_3x_1^3,\ x_2=x_1^2,\ x_3=x_1^3\)
\(h_{\theta}(x)=\theta_0+\theta_1x_1+\theta_2\sqrt{x_1},\ x_2=\sqrt{x_1}\)
Coursera 学习笔记|Machine Learning by Standford University - 吴恩达的更多相关文章
- Github | 吴恩达新书《Machine Learning Yearning》完整中文版开源
最近开源了周志华老师的西瓜书<机器学习>纯手推笔记: 博士笔记 | 周志华<机器学习>手推笔记第一章思维导图 [博士笔记 | 周志华<机器学习>手推笔记第二章&qu ...
- 吴恩达课后作业学习1-week4-homework-two-hidden-layer -1
参考:https://blog.csdn.net/u013733326/article/details/79767169 希望大家直接到上面的网址去查看代码,下面是本人的笔记 两层神经网络,和吴恩达课 ...
- Coursera课程《Machine Learning》学习笔记(week1)
这是Coursera上比较火的一门机器学习课程,主讲教师为Andrew Ng.在自己看神经网络的过程中也的确发现自己有基础不牢.一些基本概念没搞清楚的问题,因此想借这门课程来个查漏补缺.目前的计划是先 ...
- Coursera课程《Machine Learning》吴恩达课堂笔记
强烈安利吴恩达老师的<Machine Learning>课程,讲得非常好懂,基本上算是无基础就可以学习的课程. 课程地址 强烈建议在线学习,而不是把视频下载下来看.视频中间可能会有一些问题 ...
- 【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录
吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weix ...
- 我在 B 站学机器学习(Machine Learning)- 吴恩达(Andrew Ng)【中英双语】
我在 B 站学机器学习(Machine Learning)- 吴恩达(Andrew Ng)[中英双语] 视频地址:https://www.bilibili.com/video/av9912938/ t ...
- 吴恩达deepLearning.ai循环神经网络RNN学习笔记_看图就懂了!!!(理论篇)
前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - ...
- 吴恩达deepLearning.ai循环神经网络RNN学习笔记_没有复杂数学公式,看图就懂了!!!(理论篇)
本篇文章被Google中国社区组织人转发,评价: 条理清晰,写的很详细! 被阿里算法工程师点在看! 所以很值得一看! 前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RN ...
- 吴恩达(Andrew Ng)——机器学习笔记1
之前经学长推荐,开始在B站上看Andrew Ng的机器学习课程.其实已经看了1/3了吧,今天把学习笔记补上吧. 吴恩达老师的Machine learning课程共有113节(B站上的版本https:/ ...
随机推荐
- [翻译] TensorFlow 分布式之论文篇 "Implementation of Control Flow in TensorFlow"
[翻译] TensorFlow 分布式之论文篇 "Implementation of Control Flow in TensorFlow" 目录 [翻译] TensorFlow ...
- AVCaptureSession部分用法
原文链接 AVCaptureSession阻塞主线程问题 前阵子程序中出现了一个奇怪的 bug,在 iOS 系统上,页面弹出的时候会卡很久,相机始终黑屏,大概6-7秒钟,跟踪具体每个步骤花费时间的时候 ...
- Mock平台3-初识Antd React 开箱即用中台前端框架
微信搜索[大奇测试开],关注这个坚持分享测试开发干货的家伙. 内容提要 首先说下为啥这次测试开发系列教程前端选择Antd React,其实也是纠结对比过最终决定挑战一把,想法大概有几下几点: 笔者自己 ...
- ArcMap操作随记(5)
1.[栅格转面]等工具的使用 若栅格数据为浮点型,需使用[转为整型]工具,将栅格转为整型,再进行操作. 2.人口密度分布趋势图 使用[核密度分析]工具,也可尝试插值 3.点要素做面 [点集转线][要素 ...
- ArcGIS热点分析
许多论文中一般会有热点分析图,ArcGIS中提供了热点分析的功能. 先看下描述:给定一组加权要素,使用 Getis-Ord Gi* 统计识别具有统计显著性的热点和冷点. 其实非常简单,今天博主就跟大家 ...
- MATLAB2018a安装
1:同时选中进行解压 2:解压完后打开"setup.exe"进入安装步骤 3:选择"使用文件安装密钥" 4:接受条款,下一步 5:复制密钥 09806-0744 ...
- ldap常用命令
单独查询用户信息 ldapsearch -D "cn=admin,dc=hrbeu,dc=edu,dc=cn" -b "ou=hbr,dc=hrbeu,dc=edu,dc ...
- [SPDK/NVMe存储技术分析]015 - 理解内存注册(Memory Registration)
使用RDMA, 必然关系到内存区域(Memory Region)的注册问题.在本文中,我们将以mlx5 HCA卡为例回答如下几个问题: 为什么需要注册内存区域? 注册内存区域有嘛好处? 注册内存区域的 ...
- 4、传统三层架构与DDD分层架构
4.传统三层架构与DDD分层架构 模型是抽象的 现实是形象的 技巧是重要的 思想是永恒的 从传统三层架构与DDD分层架构的编程演变其实是思想的演变. 传统三层架构,即用户界面层UI.业务逻辑层BAL. ...
- SolidWorks在一个零件中设置不同的尺寸版本
问题 比如想设置一系列螺丝的长度,一个一个建零件非常麻烦,希望在一个零件中设置不同的长度尺寸版本 解决 比如想设置不同的拉伸长度,右键拉伸>配置特征 可以生成新配置,设置不同的D1参数,即可生成 ...