什么是生成树

子图:G=<V,E>,G'=<V', E'>,为两个图(V为点集,即图中点的集合,E为边集),如果V'是V的子集且E'是E的子集,则G'是G的子图。

如果V'=V,则称G'为G的生成子图

如果G'是无向生成子图且是树的结构,则为生成树

最小生成树

最小生成树:是一张有权无向连通图中边权和最小的生成树

Prme算法:

维护一个已经加入最小生成树的点的集合C,每次通过一条边连接一个不在这个点集C的点,直到最后形成一个树形结构

Dist(u)表示u点到点集C中的点的最小距离

每次选择一个到点集C距离最小的点加入点集C,并通过加入的点去更新未加入的点到点集C的最小距离(因为C中多加了一个点),直到n个点全部加入点集C或没有点能够加入(不能构成连通图)。

图解

前言:已经加入点集C的点标记为蓝色,当前加入的点标记为红色,被当前加入的点更新的dist标记为红色。

初始:加入一个初始点A,并通过A更新dist

u A B C D E F
dist(u) 0 3 5 inf inf inf

加入第二个点B:B到点集C距离最小,并通过B更新dist

u A B C D E F
dist(u) 0 3 1 8 3 inf

加入第三个点C:C到点集C距离最小,并通过C更新dist

u A B C D E F
dist(u) 0 3 1 8 3 inf

加入第四个点E:E到点集C距离最小,并通过E更新dist

u A B C D E F
dist(u) 0 3 1 2 3 1

加入第五个点F:F到点集C距离最小,并通过F更新dist

u A B C D E F
dist(u) 0 3 1 2 3 1

加入第六个点D:D到点集C距离最小,并通过D更新dist

u A B C D E F
dist(u) 0 3 1 2 3 1

点全部加入点集,Prim算法结束。

复杂度分析:

总共需要加入n个点,每次需要遍历dist数组找最小值,并通过该点更新未加入点集的dist值,即枚举该点连出的边更新对应的dist,故复杂度为:

O(n*n)+    = O(n*n + m)(mi为每个点连出的边的条数,总和为总边数)

伪代码:

int prim()

{

memset(dis, 127, sizeof(dis)); //初始设置为正无穷

memset(vis, 0, sizeof(vis));   //初始设置点均不在点集中,点集为空

ans = 0, cnt = 0;              //初始权值为0

dis[1] = 0;                    // 1加入点集

while (1)

{

int u = -1;

for (int i = 1; i <= n; i++)

{

if (vis[i] == 0 && dis[i] < (1 << 30)) // i点不在点集中并且与点集中的点联通

{

if (u == -1 || dis[i] < dis[u]) // u==-1 ->第一个点可以更新到点集最近的点

{

u = i; //更新最近的点

}

}

}

if (u == -1)

break;            //如果不能找到加入点集的点,则结束算法

cnt++, ans += dis[u]; //点集中点的个数+1,ans加上u连入点集的边权

vis[u] = true;        // vis加入点集

for (auto it : a[u])//a[u]为以u连出的边的点的集合,v为相连的点,w为边权

{

dis[it.v] = min(dis[it.v], it.w); //通过点v连出的边更新不在点集的点的dist值

}

}

if (cnt == n)

return ans; //能够加入n个点构成连通图,生成树则返回权值

else

return -1; //不能形成生成树

}

模板题 

题目链接:最小生成树1 - 题目 - Daimayuan Online Judge

题目描述:

给你一张简单无向连通图,边权都为非负整数。你需要求出它的最小生成树,只需要输出边的权值和即可。

图用以下形式给出:

第一行输入两个整数 n,m,表示图的顶点数、边数,顶点编号从 1 到 n。

接下来 m 行,每行三个整数 x,y,z 表示 x 与 y 之间有一条边,边权为 z。

输入格式:

第一行两个整数 n,m。

接下来 m 行,每行有三个整数,代表一条边。

输出格式:

输出一个数,表示最小生成树的权值和。

数据规模:

对于所有数据,保证 2≤n≤1000,n−1≤m≤100000,1≤x,y≤n,x≠y,1≤z≤10000

样例输入:

4 4

1 2 1

2 3 3

3 4 1

1 4 2

样例输出:

4

 详见代码:

#include <bits/stdc++.h>
using namespace std;
int dis[100009], cnt, ans, n, m; // dis为点到点集的最小距离,cnt为点集中点的个数,ans为当前的边权和
bool vis[100009];
struct node
{
int v, w;
};
vector<node> a[100009]; //存图
int prim()
{
memset(dis, 127, sizeof(dis)); //初始设置为正无穷
memset(vis, 0, sizeof(vis)); //初始设置点均不在点集中,点集为空
ans = 0, cnt = 0; //初始权值为0
dis[1] = 0; // 1加入点集
while (1)
{
int u = -1;
for (int i = 1; i <= n; i++) //遍历找未加入点集的最小距离的点
{
if (vis[i] == 0 && dis[i] < (1 << 30)) // i点不在点集中并且与点集中的点联通
{
if (u == -1 || dis[i] < dis[u]) // u==-1 ->第一个点可以更新到点集最近的点
{
u = i; //更新最近的点
}
}
}
if (u == -1)
break; //如果不能找到加入点集的点,则结束算法
cnt++, ans += dis[u]; //点集中点的个数+1,ans加上u连入点集的边权
vis[u] = true; // vis加入点集
for (auto it : a[u])
{
dis[it.v] = min(dis[it.v], it.w); //通过点v连出的边更新不在点集的点的dist值
}
}
if (cnt == n)
return ans; //能够加入n个点构成连通图,生成树则返回权值
else
return -1; //不能形成生成树
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= m; i++)
{
int u, v, w;
cin >> u >> v >> w;
node t1, t2; //无向图存边
t1.v = v, t1.w = w;
a[u].push_back(t1); // u->v 边权为w
t2.v = u, t2.w = w;
a[v].push_back(t2); // v->u 边权为w
}
cout << prim();
}

 参考文献:

2022 Namomo Spring Camp Div2 Day10 直播课

ending

有什么错误之处欢迎指正!不胜感激!

Prim 最小生成树 图解的更多相关文章

  1. Prim 最小生成树算法

    Prim 算法是一种解决最小生成树问题(Minimum Spanning Tree)的算法.和 Kruskal 算法类似,Prim 算法的设计也是基于贪心算法(Greedy algorithm). P ...

  2. dijkstra(最短路)和Prim(最小生成树)下的堆优化

    dijkstra(最短路)和Prim(最小生成树)下的堆优化 最小堆: down(i)[向下调整]:从第k层的点i开始向下操作,第k层的点与第k+1层的点(如果有)进行值大小的判断,如果父节点的值大于 ...

  3. 【POJ 2485】Highways(Prim最小生成树)

    题目 Prim算法:任选一个点,加入集合,找出和它最近的点,加入集合,然后用加入集合的点去更新其它点的最近距离......这题求最小生成树最大的边,于是每次更新一下最大边. #include < ...

  4. POJ 2485 Highways (prim最小生成树)

    对于终于生成的最小生成树中最长边所连接的两点来说 不存在更短的边使得该两点以不论什么方式联通 对于本题来说 最小生成树中的最长边的边长就是使整个图联通的最长边的边长 由此可知仅仅要对给出城市所抽象出的 ...

  5. Prim最小生成树板子

    普里姆算法可以称为"加点法",每次迭代选择代价最小的边对应的点,加入到最小生成树中.算法从某一个顶点s开始,逐渐长大覆盖整个连通网的所有顶点. 邻接矩阵存图  时间复杂度O(n^2 ...

  6. prim最小生成树

    prim和DIjkstra相似,都使用了贪心策略,加一些限制条件. prim每次会找出尽量小的那个边,将其加入到树中,最终使得生成树长大. 树中有n-1个节点时或者剩下的所有边都是INF,算法结束. ...

  7. HDU4081 Qin Shi Huang&#39;s National Road System【prim最小生成树+枚举】

    先求出最小生成树,然后枚举树上的边,对于每条边"分别"找出这条割边形成的两个块中点权最大的两个 1.因为结果是A/B.A的变化会引起B的变化,两个制约.无法直接贪心出最大的A/B. ...

  8. poj_1258 prim最小生成树

    题目大意 给定N个点,以及每两个点之间的路径长度,求出一个连接这N个点的方案,使得连接这N个点的总长度最短,求出该总长度. 题目分析 求最小生成树MST的模板题,直接使用prim算法进行求解. 实现( ...

  9. Poj 2421 Constructing Roads(Prim 最小生成树)

    题意:有几个村庄,要修最短的路,使得这几个村庄连通.但是现在已经有了几条路,求在已有路径上还要修至少多长的路. 分析:用Prim求最小生成树,将已有路径的长度置为0,由于0是最小的长度,所以一定会被P ...

随机推荐

  1. 说说 RPC 的实现原理?

    首先需要有处理网络连接通讯的模块,负责连接建立.管理和消息的传输.其次需要有编解码的模块,因为网络通讯都是传输的字节码,需要将我们使用的对象序列化和反序列化.剩下的就是客户端和服务器端的部分,服务器端 ...

  2. Mybatis框架基础入门(六)--动态sql

    主要是通过mybatis提供的各种标签方法实现动态拼接sql. 1.if标签 <!-- 根据条件查询用户 --> <select id="queryUserByWhere& ...

  3. consumer提交offset原理

    1 数据结构 消费者的消费状态是保存在SubscriptionState类中的,而SubscriptionState有个重要的属性那就是assignment保存了消费者消费的partition及其pa ...

  4. mybatis插件机制原理

    mybatis插件机制及分页插件原理 参考链接:mybatis插件机制及分页插件原理 如何编写一个自定义mybatis插件 参考链接:mybatis 自定义插件的使用

  5. BeanFactory – BeanFactory 实现举例?

    Bean 工厂是工厂模式的一个实现,提供了控制反转功能,用来把应用的配置和依赖从正真的应用代码中分离. 最常用的BeanFactory 实现是XmlBeanFactory 类.

  6. Spring工作原理:初识SpringMVC

    1.SpringMVC简介 SpringMVC是Spring框架的一个模块.SpringMVC和Spring无需通过中间层进行整合.是一个轻量级的,基于请求响应的MVC框架. 2.1.什么是MVC? ...

  7. 学习openstack(三)

      一.OpenStack初探 1.1 OpenStack简介 OpenStack是一整套开源软件项目的综合,它允许企业或服务提供者建立.运行自己的云计算和存储设施.Rackspace与NASA是最初 ...

  8. Linux 搭建Apollo

    简介 Apollo(阿波罗)是携程框架部门研发的分布式配置中心,能够集中化管理应用不同环境.不同集群的配置,配置修改后能够实时推送到应用端,并且具备规范的权限.流程治理等特性,适用于微服务配置管理场景 ...

  9. 正则系列——JavaScript正则表达式入门心得

    我发现有个别字符被这个编辑器给刷掉了,但是灰色区域显示正常,以灰色区域代码为准 什么玩意? 在我刚开始学习编程的时候,就听过正则了,也听说正则很牛逼,懂正则的更牛逼.但是苦于没有人指点,也没有使用正则 ...

  10. Java自定义异常类的简单实现

    学习目标: 掌握自定义异常类 例题: 需求:自定义异常类,简单判断是否注册成功 代码如下: RegisterException类: /** * @author YanYang * @projectNa ...