POJ 1518 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】
链接:
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 4475 | Accepted: 1374 | 
Description
so are intended to fit inside a round hole.
A recent factory run of computer desks were flawed when an automatic grinding machine was mis-programmed. The result is an irregularly shaped hole in one piece that, instead of the expected circular shape, is actually an irregular polygon. You need to figure
out whether the desks need to be scrapped or if they can be salvaged by filling a part of the hole with a mixture of wood shavings and glue.
There are two concerns. First, if the hole contains any protrusions (i.e., if there exist any two interior points in the hole that, if connected by a line segment, that segment would cross one or more edges of the hole), then the filled-in-hole would not be
structurally sound enough to support the peg under normal stress as the furniture is used. Second, assuming the hole is appropriately shaped, it must be big enough to allow insertion of the peg. Since the hole in this piece of wood must match up with a corresponding
hole in other pieces, the precise location where the peg must fit is known.
Write a program to accept descriptions of pegs and polygonal holes and determine if the hole is ill-formed and, if not, whether the peg will fit at the desired location. Each hole is described as a polygon with vertices (x1, y1), (x2, y2), . . . , (xn, yn).
The edges of the polygon are (xi, yi) to (xi+1, yi+1) for i = 1 . . . n − 1 and (xn, yn) to (x1, y1).
Input
Line 1 < nVertices > < pegRadius > < pegX > < pegY >
number of vertices in polygon, n (integer)
radius of peg (real)
X and Y position of peg (real)
n Lines < vertexX > < vertexY >
On a line for each vertex, listed in order, the X and Y position of vertex The end of input is indicated by a number of polygon vertices less than 3.
Output
HOLE IS ILL-FORMED if the hole contains protrusions
PEG WILL FIT if the hole contains no protrusions and the peg fits in the hole at the indicated position
PEG WILL NOT FIT if the hole contains no protrusions but the peg will not fit in the hole at the indicated position
Sample Input
5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.0
1.0 3.0
0.0 2.0
5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.5
1.0 3.0
0.0 2.0
1
Sample Output
HOLE IS ILL-FORMED
PEG WILL NOT FIT
Source
题意:
判断钉子是否在多边形内部
注意:
再输入的是钉子的半径,然后才是坐标ToT
思路:
如果不是,则输出 HOLE IS ILL-FORMED
如果是,则继续往下判断
2.(1)判断圆心是否在凸多边形外面
如果在外面,直接返回 false
如果在边上,而且半径 == 0,返回 true
半径不为 0 , 返回 false
如果在内部,则遍历圆心到每一条边线段的距离是否 >= 半径
如果全部满足,则返回 true
否则返回 false
如果钉子能装下,则输出PEG WILL FIT
否则输出PEG WILL NOT FIT
相关测试题目:
/***************************************************
Accepted 192 KB 0 ms C++ 4208 B 2013-07-28 16:02:24
题意:给你一个含有 N个点的多边形和一个钉子
判断钉子是否在多边形内部
注意:输入的第一行先输入多边形的点数,
再输入的是钉子的半径,然后才是坐标ToT 思路:1.先判断多边形是不是凸多边形,
如果不是,则输出 HOLE IS ILL-FORMED
如果是,则继续往下判断
2.(1)判断圆心是否在凸多边形外面
如果在外面,直接返回 false
如果在边上,而且半径 == 0,返回 true
半径不为 0 , 返回 false
如果在内部,则遍历圆心到每一条边线段的距离是否 >= 半径
如果全部满足,则返回 true
否则返回 false
如果钉子能装下,则输出PEG WILL FIT
否则输出PEG WILL NOT FIT
***************************************************/
#include<stdio.h>
#include<math.h> const int maxn = 200; struct Point{
double x,y; Point() {}
Point(double _x, double _y) {
x = _x;
y = _y;
}
Point operator - (const Point &B)
{
return Point(x-B.x, y-B.y);
}
}p[maxn]; struct Circle{
Point center;
double radius;
}c; const double eps = 1e-5;
int dcmp(double x)
{
if(fabs(x) < 0) return 0;
else return x < 0 ? -1 : 1;
} bool operator == (const Point &A, const Point &B)
{
return dcmp(A.x-B.x)== 0 && dcmp(A.y-B.y) == 0;
} double Cross(Point A, Point B) /** 叉积*/
{
return A.x*B.y - A.y*B.x;
}
double Dot(Point A, Point B) /** 点积*/
{
return A.x*B.x+A.y*B.y;
} double Length(Point A)
{
return sqrt(A.x*A.x + A.y*A.y);
} /** 判断多边形是否是凸多边形【含共线】*/
bool isConvex(Point *p, int n)
{
p[n] = p[0]; // 边界处理
p[n+1] = p[1]; // 注意也可以用 %n 处理, 下标从 0 开始
int now = dcmp(Cross(p[1]-p[0], p[2]-p[1]));
for(int i = 1; i < n; i++)
{
int next = dcmp(Cross(p[i+1]-p[i], p[i+2]-p[i+1]));
if(now*next < 0) //此处可以共线
{
return false;
}
now = next; //注意记录临界条件
}
return true;
} /** 点Point 是否在有 n 个顶点的凸多边形内【含边界】*/
int isPointInConvex(Point *p, int n, Point point)
{
int flag = 1;
p[n] = p[0];
int now = dcmp(Cross(p[0]-point, p[1]-point));
for(int i = 1; i < n; i++)
{
int next = dcmp(Cross(p[i]-point, p[i+1]-point));
if(next*now < 0)
{
return -1; /** 点在外面*/
}
else if(next*now == 0)
{
return 0; /** 点在边上 */
}
now = next;
}
return flag; /** 点在内部*/
} /** 判断点P 到线段 AB的距离*/
double DistanceToSegment(Point P, Point A, Point B)
{
if(A == B) return Length(P-A);
Point v1 = B-A;
Point v2 = P-A;
Point v3 = P-B; if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
else return fabs(Cross(v1, v2))/ Length(v1); //忠告:不要脑残的 / 2...
} /** 判断圆是否在凸多边形内部, 相切也可以*/
bool isCircleInConvex(Point *p, int n, Circle c)
{
int flag = isPointInConvex(p, n, c.center); /**判断圆心*/ if(flag == 0) /** 圆心在边上*/
{
if(c.radius == 0) return true;
else return false;
}
else if(flag == 1) /** 圆心在内部*/
{
p[n] = p[0]; /** 边界处理*/
for(int i = 0; i < n; i++) /** 遍历所有的边 */
{
if(dcmp(DistanceToSegment(c.center, p[i], p[i+1])-c.radius) < 0)
{
return false;
}
}
return true;
}
else return false; /** 圆心在外部*/
} int main()
{
int n;
while(scanf("%d", &n) != EOF)
{
if(n < 3) break; /** 忠告:输入时注意顺序, 不要脑残。。。*/
scanf("%lf%lf%lf", &c.radius, &c.center.x, &c.center.y);
for(int i = 0; i < n; i++)
scanf("%lf%lf", &p[i].x, &p[i].y); bool flag = isConvex(p, n); /** 判断是否是凸多边形*/
if(flag)
{
flag = isCircleInConvex(p, n, c);
if(flag) printf("PEG WILL FIT\n");
else printf("PEG WILL NOT FIT\n");
}
else printf("HOLE IS ILL-FORMED\n");
}
return 0;
}
POJ 1518 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】的更多相关文章
- POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内
		
首先判断是不是凸多边形 然后判断圆是否在凸多边形内 不知道给出的点是顺时针还是逆时针,所以用判断是否在多边形内的模板,不用是否在凸多边形内的模板 POJ 1584 A Round Peg in a G ...
 - POJ 1584 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】
		
链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
 - POJ 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)
		
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4438 Acc ...
 - POJ 1584 A Round Peg in a Ground Hole 判断凸多边形,判断点在凸多边形内
		
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5456 Acc ...
 - POJ 1584 A Round Peg in a Ground Hole[判断凸包 点在多边形内]
		
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6682 Acc ...
 - POJ - 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)
		
http://poj.org/problem?id=1584 题意 按照顺时针或逆时针方向输入一个n边形的顶点坐标集,先判断这个n边形是否为凸包. 再给定一个圆形(圆心坐标和半径),判断这个圆是否完全 ...
 - POJ 1584	 A Round Peg in a Ground Hole --判定点在形内形外形上
		
题意: 给一个圆和一个多边形,多边形点可能按顺时针给出,也可能按逆时针给出,先判断多边形是否为凸包,再判断圆是否在凸包内. 解法: 先判是否为凸包,沿着i=0~n,先得出初始方向dir,dir=1为逆 ...
 - 简单几何(点的位置) POJ 1584 A Round Peg in a Ground Hole
		
题目传送门 题意:判断给定的多边形是否为凸的,peg(pig?)是否在多边形内,且以其为圆心的圆不超出多边形(擦着边也不行). 分析:判断凸多边形就用凸包,看看点集的个数是否为n.在多边形内用叉积方向 ...
 - POJ 1584 A Round Peg in a Ground Hole
		
先判断是不是N多边形,求一下凸包,如果所有点都用上了,那么就是凸多边形 判断圆是否在多边形内, 先排除圆心在多边形外的情况 剩下的情况可以利用圆心到每条边的最短距离与半径的大小来判断 #include ...
 
随机推荐
- 几个有关Hadoop自带的性能测试工具的应用
			
http://www.talkwithtrend.com/Question/177983-1247453 一些测试的描述如下内容最为详细,供你参考: 测试对于验证系统的正确性.分析系统的性能来说非常重 ...
 - JPEG编码(二)
			
来自CSDN评论区http://bbs.csdn.net/topics/190980 1. 色彩模型 JPEG 的图片使用的是 YCrCb 颜色模型, 而不是计算机上最常用的 RGB. 关于色彩模型, ...
 - sersync+rsync实时数据同步
			
sersync+rsync实时数据同步 1.相关背景介绍 前面有关文章配置实现了rsync增量同步以及配置为定时同步,但是在实际生产环境中需要实时的监控数据从而进行同步(不间断同步),可以采取inot ...
 - 8.使用JPA保存数据【从零开始学Spring Boot】
			
转载:http://blog.csdn.net/linxingliang/article/details/51636989 在看这一篇文档的话,需要先配置好JPA – hibernate. 总体步骤: ...
 - IO流(二)I/O
			
一.IO流概述 1.定义:Java的IO流是实现输入输出的基础,它可以方便地实现数据的输入/输出操作. 2.流的分类: (1)按流向来分:输入流和输出流 (2)按操作的数据来分:字节流和字符流 (3) ...
 - functools.wraps
			
我们在使用 Decorator 的过程中,难免会损失一些原本的功能信息.直接拿 stackoverflow 里面的栗子 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
 - ping百度不通的解决方案
			
1.ping www.baidu.com unknow baidu.com 第一步,确定是否能ping通网关 第二步,确定是否能直接ping通外网 如ping 8.8.8.8 第三步,如果上面两个都 ...
 - Nginx:管理HTTP模块的配置项
			
参考资料<深入理解Nginx> 一个nginx.conf的例子 http { mytest_num ; server { server_name A; listen ; mytest_nu ...
 - block知识点
			
1.block引用局部变量的时候,该变量会作为常量编码到block中,在block中不能被修改. 2.使用 __block修饰的局部变量,不会作为常量被编码到block中,故而在block中可以被修改 ...
 - 工作总结  错误	 using 块缺少结束字符“}”。请确保此块内的所有“{”都有匹配的“}”字符,并且任何“}”都不会解释为标记。
			
页面上 有两个 它会跟标签 匹配的 标准要在同一级别下 什么也不改变 只改变它们位置 就不报错了 总结 @using (Html.BeginForm()) { } 要根据标签位置 匹配 要放 ...