链接:




A Round Peg in a Ground Hole
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4475   Accepted: 1374

Description

The DIY Furniture company specializes in assemble-it-yourself furniture kits. Typically, the pieces of wood are attached to one another using a wooden peg that fits into pre-cut holes in each piece to be attached. The pegs have a circular cross-section and
so are intended to fit inside a round hole. 

A recent factory run of computer desks were flawed when an automatic grinding machine was mis-programmed. The result is an irregularly shaped hole in one piece that, instead of the expected circular shape, is actually an irregular polygon. You need to figure
out whether the desks need to be scrapped or if they can be salvaged by filling a part of the hole with a mixture of wood shavings and glue. 

There are two concerns. First, if the hole contains any protrusions (i.e., if there exist any two interior points in the hole that, if connected by a line segment, that segment would cross one or more edges of the hole), then the filled-in-hole would not be
structurally sound enough to support the peg under normal stress as the furniture is used. Second, assuming the hole is appropriately shaped, it must be big enough to allow insertion of the peg. Since the hole in this piece of wood must match up with a corresponding
hole in other pieces, the precise location where the peg must fit is known. 

Write a program to accept descriptions of pegs and polygonal holes and determine if the hole is ill-formed and, if not, whether the peg will fit at the desired location. Each hole is described as a polygon with vertices (x1, y1), (x2, y2), . . . , (xn, yn).
The edges of the polygon are (xi, yi) to (xi+1, yi+1) for i = 1 . . . n − 1 and (xn, yn) to (x1, y1).

Input

Input consists of a series of piece descriptions. Each piece description consists of the following data: 

Line 1 < nVertices > < pegRadius > < pegX > < pegY > 

number of vertices in polygon, n (integer) 

radius of peg (real) 

X and Y position of peg (real) 

n Lines < vertexX > < vertexY > 

On a line for each vertex, listed in order, the X and Y position of vertex The end of input is indicated by a number of polygon vertices less than 3.

Output

For each piece description, print a single line containing the string: 

HOLE IS ILL-FORMED if the hole contains protrusions 

PEG WILL FIT if the hole contains no protrusions and the peg fits in the hole at the indicated position 

PEG WILL NOT FIT if the hole contains no protrusions but the peg will not fit in the hole at the indicated position

Sample Input

5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.0
1.0 3.0
0.0 2.0
5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.5
1.0 3.0
0.0 2.0
1

Sample Output

HOLE IS ILL-FORMED
PEG WILL NOT FIT

Source



题意:


给你一个含有 N个点的多边形和一个钉子

        判断钉子是否在多边形内部


注意:

输入的第一行先输入多边形的点数,   

再输入的是钉子的半径,然后才是坐标ToT

思路:


1.先判断多边形是不是凸多边形,

           如果不是,则输出 HOLE IS ILL-FORMED

          如果是,则继续往下判断

       2.(1)判断圆心是否在凸多边形外面

            如果在外面,直接返回 false

            如果在边上,而且半径 == 0,返回 true

                       半径不为 0 , 返回 false

            如果在内部,则遍历圆心到每一条边线段的距离是否 >= 半径

                       如果全部满足,则返回 true

                       否则返回 false

         如果钉子能装下,则输出PEG WILL FIT

         否则输出PEG WILL NOT FIT


忠告:不要NC


相关测试题目:




开始一直WA直到找了这三道基础的题目AC完



/***************************************************
Accepted 192 KB 0 ms C++ 4208 B 2013-07-28 16:02:24
题意:给你一个含有 N个点的多边形和一个钉子
判断钉子是否在多边形内部
注意:输入的第一行先输入多边形的点数,
再输入的是钉子的半径,然后才是坐标ToT 思路:1.先判断多边形是不是凸多边形,
如果不是,则输出 HOLE IS ILL-FORMED
如果是,则继续往下判断
2.(1)判断圆心是否在凸多边形外面
如果在外面,直接返回 false
如果在边上,而且半径 == 0,返回 true
半径不为 0 , 返回 false
如果在内部,则遍历圆心到每一条边线段的距离是否 >= 半径
如果全部满足,则返回 true
否则返回 false
如果钉子能装下,则输出PEG WILL FIT
否则输出PEG WILL NOT FIT
***************************************************/
#include<stdio.h>
#include<math.h> const int maxn = 200; struct Point{
double x,y; Point() {}
Point(double _x, double _y) {
x = _x;
y = _y;
}
Point operator - (const Point &B)
{
return Point(x-B.x, y-B.y);
}
}p[maxn]; struct Circle{
Point center;
double radius;
}c; const double eps = 1e-5;
int dcmp(double x)
{
if(fabs(x) < 0) return 0;
else return x < 0 ? -1 : 1;
} bool operator == (const Point &A, const Point &B)
{
return dcmp(A.x-B.x)== 0 && dcmp(A.y-B.y) == 0;
} double Cross(Point A, Point B) /** 叉积*/
{
return A.x*B.y - A.y*B.x;
}
double Dot(Point A, Point B) /** 点积*/
{
return A.x*B.x+A.y*B.y;
} double Length(Point A)
{
return sqrt(A.x*A.x + A.y*A.y);
} /** 判断多边形是否是凸多边形【含共线】*/
bool isConvex(Point *p, int n)
{
p[n] = p[0]; // 边界处理
p[n+1] = p[1]; // 注意也可以用 %n 处理, 下标从 0 开始
int now = dcmp(Cross(p[1]-p[0], p[2]-p[1]));
for(int i = 1; i < n; i++)
{
int next = dcmp(Cross(p[i+1]-p[i], p[i+2]-p[i+1]));
if(now*next < 0) //此处可以共线
{
return false;
}
now = next; //注意记录临界条件
}
return true;
} /** 点Point 是否在有 n 个顶点的凸多边形内【含边界】*/
int isPointInConvex(Point *p, int n, Point point)
{
int flag = 1;
p[n] = p[0];
int now = dcmp(Cross(p[0]-point, p[1]-point));
for(int i = 1; i < n; i++)
{
int next = dcmp(Cross(p[i]-point, p[i+1]-point));
if(next*now < 0)
{
return -1; /** 点在外面*/
}
else if(next*now == 0)
{
return 0; /** 点在边上 */
}
now = next;
}
return flag; /** 点在内部*/
} /** 判断点P 到线段 AB的距离*/
double DistanceToSegment(Point P, Point A, Point B)
{
if(A == B) return Length(P-A);
Point v1 = B-A;
Point v2 = P-A;
Point v3 = P-B; if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
else return fabs(Cross(v1, v2))/ Length(v1); //忠告:不要脑残的 / 2...
} /** 判断圆是否在凸多边形内部, 相切也可以*/
bool isCircleInConvex(Point *p, int n, Circle c)
{
int flag = isPointInConvex(p, n, c.center); /**判断圆心*/ if(flag == 0) /** 圆心在边上*/
{
if(c.radius == 0) return true;
else return false;
}
else if(flag == 1) /** 圆心在内部*/
{
p[n] = p[0]; /** 边界处理*/
for(int i = 0; i < n; i++) /** 遍历所有的边 */
{
if(dcmp(DistanceToSegment(c.center, p[i], p[i+1])-c.radius) < 0)
{
return false;
}
}
return true;
}
else return false; /** 圆心在外部*/
} int main()
{
int n;
while(scanf("%d", &n) != EOF)
{
if(n < 3) break; /** 忠告:输入时注意顺序, 不要脑残。。。*/
scanf("%lf%lf%lf", &c.radius, &c.center.x, &c.center.y);
for(int i = 0; i < n; i++)
scanf("%lf%lf", &p[i].x, &p[i].y); bool flag = isConvex(p, n); /** 判断是否是凸多边形*/
if(flag)
{
flag = isCircleInConvex(p, n, c);
if(flag) printf("PEG WILL FIT\n");
else printf("PEG WILL NOT FIT\n");
}
else printf("HOLE IS ILL-FORMED\n");
}
return 0;
}







POJ 1518 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】的更多相关文章

  1. POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内

    首先判断是不是凸多边形 然后判断圆是否在凸多边形内 不知道给出的点是顺时针还是逆时针,所以用判断是否在多边形内的模板,不用是否在凸多边形内的模板 POJ 1584 A Round Peg in a G ...

  2. POJ 1584 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】

    链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  3. POJ 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4438   Acc ...

  4. POJ 1584 A Round Peg in a Ground Hole 判断凸多边形,判断点在凸多边形内

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5456   Acc ...

  5. POJ 1584 A Round Peg in a Ground Hole[判断凸包 点在多边形内]

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6682   Acc ...

  6. POJ - 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)

    http://poj.org/problem?id=1584 题意 按照顺时针或逆时针方向输入一个n边形的顶点坐标集,先判断这个n边形是否为凸包. 再给定一个圆形(圆心坐标和半径),判断这个圆是否完全 ...

  7. POJ 1584 A Round Peg in a Ground Hole --判定点在形内形外形上

    题意: 给一个圆和一个多边形,多边形点可能按顺时针给出,也可能按逆时针给出,先判断多边形是否为凸包,再判断圆是否在凸包内. 解法: 先判是否为凸包,沿着i=0~n,先得出初始方向dir,dir=1为逆 ...

  8. 简单几何(点的位置) POJ 1584 A Round Peg in a Ground Hole

    题目传送门 题意:判断给定的多边形是否为凸的,peg(pig?)是否在多边形内,且以其为圆心的圆不超出多边形(擦着边也不行). 分析:判断凸多边形就用凸包,看看点集的个数是否为n.在多边形内用叉积方向 ...

  9. POJ 1584 A Round Peg in a Ground Hole

    先判断是不是N多边形,求一下凸包,如果所有点都用上了,那么就是凸多边形 判断圆是否在多边形内, 先排除圆心在多边形外的情况 剩下的情况可以利用圆心到每条边的最短距离与半径的大小来判断 #include ...

随机推荐

  1. CKEditor+SWFUpload实现功能较为强大的编辑器(二)---SWFUpload配置

    在前面配置完CKEditor之后,就可以拥有一个功能挺强大的编辑器了 但是现在还不够,还要能够在发表文字中插入自己电脑上的图片 CKEditor自己好像有这个功能,但是实在是...没法说,很难用(这是 ...

  2. 15款Java程序员必备的开发工具

    如果你是一名Web开发人员,那么用膝盖想也知道你的职业生涯大部分将使用Java而度过.这是一款商业级的编程语言,我们没有办法不接触它. 对于Java,有两种截然不同的观点:一种认为Java是最简单功能 ...

  3. OkHttpClient简单封装

    一.接口 public interface HttpListener { void onFinish(String reponse); void onError(Exception e); } 二.O ...

  4. PHP中session详解

    SESSION 的数据保存在哪里呢?  当然是在服务器端,但不是保存在内存中,而是保存在文件或数据库中.  默认情况下,PHP.ini 中设置的 SESSION 保存方式是 files(session ...

  5. C语言结构体及函数传递数组參数演示样例

    注:makeSphere()函数返回Sphere结构体,main函数中.调用makeSphere()函数,传递的第一个參数为数组,传递的数组作为指针.

  6. 机房收费系统合作版(二)——初识Git

    研究了一天半的Git.查阅了不少资料,这里将Git的运用分为两条线做个简单梳理:本地控制库.远程控制库. **************************************本地控制库**** ...

  7. 数据存储之iOS断点续传

    iOS里面实现断点续传 第三方框架之AFN 代码实现 一.iOS里面实现断点续传 1⃣️AFN基于NSURL 1.性能和稳定性略差.针对JSON.XML.Plist和Image四种数据结构封装了各自处 ...

  8. HDU 4417 划分树+二分

    题意:有n个数.m个询问(l,r,k),问在区间[l,r] 有多少个数小于等于k. 划分树--查找区间第k大的数.... 利用划分树的性质.二分查找在区间[l,r]小于等于k的个数. 假设在区间第 i ...

  9. 在Less中使用条件判断

    好几个月都没写点什么东西了,被外派到Gov开发项目,老旧的系统让开发痛苦不堪,接口文档甚至是2011年的,感觉这几个月的时间都被浪费在做兼容处理上了,并且没学到什么东西,心里挺不是滋味.回到公司后才知 ...

  10. PHP性能之语言性能优化:魔术方法好不好?

    魔术方法是什么鬼? 魔术方法,也叫魔鬼函数.只要学过PHP的都知道什么是魔术方法,魔术方法就是在某些条件下自动执行的函数. PHP的魔术方法主要有下面几个,其他的参考PHP官方手册 __constru ...