最长上升子序列问题(O(n^2)算法)
【题目描述】
给定N个数,求这N个数的最长上升子序列的长度。
【样例输入】
7
2 5 3 4 1 7 6
【样例输出】
4
什么是最长上升子序列? 就是给你一个序列,请你在其中求出一段不断严格上升的部分,它不一定要连续。
就像这样:2,3,4,7和2,3,4,6就是序列2 5 3 4 1 7 6的两种选取方案。最长的长度是4.
什么是最长上升子序列? 就是给你一个序列,请你在其中求出一段不断严格上升的部分,它不一定要连续。
就像这样:2,3,4,7和2,3,4,6就是序列2 5 3 4 1 7 6的两种选取方案。最长的长度是4.
那么,怎么求出它的最大上升子序列长度为4呢?这里介绍两种方法,都是以动态规划为基础的。
首先,我们先介绍较慢(O(n2n2))的方法。我们记num为到这个数为止,最长上升子序列的长度。
这种方法就是每一次寻找“可以接下去的”,换句话说,设原序列为a,则
当aj<ai(j<i)aj<ai(j<i)且numj+1>numinumj+1>numi时,numi=numj+1numi=numj+1。
对于每一个数,他都是在“可以接下去”的中,从前面的最优值+1转移而来。
因此,这个算法是可以求出正确答案的。复杂度很明显,外层i枚举每个数,内层j枚举目前i的最优值,即O(n^2)。
这是比较简单好理解的方法:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
int main()
{
int a[10005];
int num[10005];
int n;
scanf("%d",&n);
for(int t=0;t<n;t++)
{
scanf("%d",&a[t]);
num[t]=1;
}
for(int t=0;t<n;t++)
for(int j=0;j<t;j++)
{
if(a[t]>a[j])
num[t]=max(num[t],num[j]+1);
}
int maxn=-100;
for(int t=0;t<n;t++)
{
maxn=max(num[t],maxn);
}
cout<<maxn<<endl;
return 0;
}
最长上升子序列问题(O(n^2)算法)的更多相关文章
- 动态规划:最长上升子序列之基础(经典算法 n^2)
解题心得: 1.注意动态转移方程式,d[j]+1>d[i]>?d[i]=d[j]+1:d[i] 2.动态规划的基本思想:将大的问题化为小的,再逐步扩大得到答案,但是小问题的基本性质要和大的 ...
- hdu 1950 最长上升子序列(lis) nlogn算法【dp】
这个博客说的已经很好了.http://blog.csdn.net/shuangde800/article/details/7474903 简单记录一下自己学的: 问题就是求一个数列最长上升子序列的长度 ...
- 最长公共子序列(LCS)和最长递增子序列(LIS)的求解
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...
- 动态规划 最长公共子序列 LCS,最长单独递增子序列,最长公共子串
LCS:给出两个序列S1和S2,求出的这两个序列的最大公共部分S3就是就是S1和S2的最长公共子序列了.公共部分 必须是以相同的顺序出现,但是不必要是连续的. 选出最长公共子序列.对于长度为n的序列, ...
- Longest Increasing Subsequences(最长递增子序列)的两种DP实现
一.本文内容 最长递增子序列的两种动态规划算法实现,O(n^2)及O(nlogn). 二.问题描述 最长递增子序列:给定一个序列,从该序列找出最长的 升序/递增 子序列. 特点:1.子序列不要 ...
- 51 Nod 1134 最长递增子序列 (动态规划基础)
原题链接:1134 最长递增子序列 题目分析:长度为 的数列 有多达 个子序列,但我们应用动态规划法仍可以很高效地求出最长递增子序列().这里介绍两种方法. 先考虑用下列变量设计动态规划的算法. ...
- 用python实现最长公共子序列算法(找到所有最长公共子串)
软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- [Data Structure] LCSs——最长公共子序列和最长公共子串
1. 什么是 LCSs? 什么是 LCSs? 好多博友看到这几个字母可能比较困惑,因为这是我自己对两个常见问题的统称,它们分别为最长公共子序列问题(Longest-Common-Subsequence ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
随机推荐
- css垂直居中方法(二)
第四种方法: 这个方法把一些div的显示方式设置为表格,因此我们可以使用表格的vartial-align属性. 代码如下: <!doctype html> <html lang=&q ...
- Maven核心概念(转)
转自 https://www.cnblogs.com/xdp-gacl/p/4051819.html 一.Maven坐标 1.1.什么是坐标? 在平面几何中坐标(x,y)可以标识平面中唯一的一点. 1 ...
- 使用Eclipse的常见问题整理
我在Eclipse里新建一个android工程的时候附带着产生了一个名字为appcompat_v7的工程,这个工程是干什么用的啊?为何我新建的工程都出错了,错误信息提示为: error: Error ...
- AWT简介
-------------siwuxie095 AWT 简介: AWT(Abstract Window Toolkit)是最原始的 Java G ...
- Ros学习——Python发布器publisher和订阅器subscriber
1.编写发布器 初始化 ROS 系统 在 ROS 网络内广播我们将要在 chatter 话题上发布 std_msgs/String 类型的消息 以每秒 10 次的频率在 chatter 上发布消息 在 ...
- C#简单的图片合成及防止并发的办法
/// <summary> /// 合成图 /// </summary> private string ComposeCarBrandBadImage(AnonAttachme ...
- Selenium二次封装-Java版本
package com.yanfuchang.selenium.utils; import java.awt.AWTException; import java.awt.Robot; import j ...
- Linux 性能调优
一.简介 有些时候,我们特别关注程序的性能,特别是底层软件,比如驱动程序,OS等.为了更好的优化程序性能,我们必须找到性能瓶颈点,"好钢用在刀刃上"才能取得好的效果,否则可能白做工 ...
- 关于LIst Set Map 异常的知识点---我的笔记
今天新的内容1.List接口2.Set接口3.Map集合4.异常==================================================================== ...
- Timer的schedule和scheduleAtFixedRate方法的区别解析(转)
在java中,Timer类主要用于定时性.周期性任务 的触发,这个类中有两个方法比较难理解,那就是schedule和scheduleAtFixedRate方法,在这里就用实例分析一下 (1)sched ...