Two elements of a binary search tree (BST) are swapped by mistake.

Recover the tree without changing its structure. (Hard)

Note:
A solution using O(n) space is pretty straight forward. Could you devise a constant space solution?

分析:

BST的中序遍历应该是递增的,我们考虑这样一个中序遍历序列1,2,6,4,5,3,7,其中3,6是交换了位置的。

所以我们就按照中序遍历的顺序遍历树,记录cur, prev, beforePrev三个变量;

第一次出现before < prev > cur的prev即为要交换的第一个元素,最后一个满足beforePrev > prev < cur的即为要交换的另一个元素。

然后再遍历一遍把这两个节点找出来,交换其value值即可。

注意:比如1,0这种样例,当最后一个节点是被交换的元素的时候,无法用上述判断,但如果其满足prev > cur说明cur即为要交换的元素。

代码:

 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
int beforePrev = -0x7FFFFFFF, prev = -0x7FFFFFFF, cur = -0x7FFFFFFF;
int s1 = -0x7FFFFFFF, s2 = -0x7FFFFFFF;
TreeNode* t1;
TreeNode* t2;
private:
void helper(TreeNode* root) {
if (root == nullptr) {
return;
}
helper(root -> left);
beforePrev = prev;
prev = cur;
cur = root -> val;
if (beforePrev < prev && prev > cur && s1 == -0x7FFFFFFF) {
s1 = prev;
}
if (beforePrev > prev && prev < cur ) {
s2 = prev;
} helper(root -> right);
} void dfs(TreeNode* root) {
if (root == nullptr) {
return;
}
dfs(root -> left);
if (root -> val == s1) {
t1 = root;
}
if (root -> val == s2) {
t2 = root;
}
dfs(root -> right);
}
public:
void recoverTree(TreeNode* root) {
helper(root);
if (cur < prev) {
s2 = cur;
}
dfs(root);
swap(t1 -> val, t2 -> val);
return;
}
};
 

LeetCode99 Recover Binary Search Tree的更多相关文章

  1. Leetcode 笔记 99 - Recover Binary Search Tree

    题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...

  2. 【leetcode】Recover Binary Search Tree

    Recover Binary Search Tree Two elements of a binary search tree (BST) are swapped by mistake. Recove ...

  3. 39. Recover Binary Search Tree && Validate Binary Search Tree

    Recover Binary Search Tree OJ: https://oj.leetcode.com/problems/recover-binary-search-tree/ Two elem ...

  4. 【LeetCode练习题】Recover Binary Search Tree

    Recover Binary Search Tree Two elements of a binary search tree (BST) are swapped by mistake. Recove ...

  5. LeetCode: Recover Binary Search Tree 解题报告

    Recover Binary Search Tree Two elements of a binary search tree (BST) are swapped by mistake. Recove ...

  6. [LeetCode] 99. Recover Binary Search Tree(复原BST) ☆☆☆☆☆

    Recover Binary Search Tree leetcode java https://leetcode.com/problems/recover-binary-search-tree/di ...

  7. [线索二叉树] [LeetCode] 不需要栈或者别的辅助空间,完成二叉树的中序遍历。题:Recover Binary Search Tree,Binary Tree Inorder Traversal

    既上篇关于二叉搜索树的文章后,这篇文章介绍一种针对二叉树的新的中序遍历方式,它的特点是不需要递归或者使用栈,而是纯粹使用循环的方式,完成中序遍历. 线索二叉树介绍 首先我们引入“线索二叉树”的概念: ...

  8. 【LeetCode】99. Recover Binary Search Tree

    Recover Binary Search Tree Two elements of a binary search tree (BST) are swapped by mistake. Recove ...

  9. 【LeetCode】99. Recover Binary Search Tree 解题报告(Python)

    [LeetCode]99. Recover Binary Search Tree 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/p ...

随机推荐

  1. POJ 1386&&HDU 1116 Play on Words(我以后再也不用cin啦!!!)

    Play on Words Some of the secret doors contain a very interesting word puzzle. The team of archaeolo ...

  2. Laravel使用EasyWechat 进行微信支付

    微信支付和EasyWeChat这个包都是巨坑, 文档写的稀烂, 记录下防止以后又重复踩坑: 安装教程在这: https://www.jianshu.com/p/82d688e1fd2a

  3. stream分组

    1.根据集合元素中的一个属性值分组 Person p1 = new Person("张三", new BigDecimal("10.0"));Person p2 ...

  4. TZ_14_Zuul网关_过滤器

    1.Zuul作为网关的其中一个重要功能,就是实现请求的鉴权.而这个动作我们往往是通过Zuul提供的过滤器来实现的. 2.自定义过滤器实现用户登陆时需要携带一个Key才可以登陆,否则返回403 1> ...

  5. LTIME16小结(CodeChef)

    题目链接 最后一题是Splay...还没有学会..蒟蒻!!! A /****************************************************************** ...

  6. CentOS7 下的 firewall 用法

    1.firewalld的基本使用 启动: systemctl start firewalld 查看状态: systemctl status firewalld  停止: systemctl disab ...

  7. 通信网络 ccf

    试题编号: 201709-4 试题名称: 通信网络 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 某国的军队由N个部门组成,为了提高安全性,部门之间建立了M条通路,每条通路只 ...

  8. Oracle 优化效率

    一.链接: ORACLE多表查询优化 oracle的 分表 详解 -----表分区 Oracle数据库查询优化方案(处理上百万级记录如何提高处理查询速度) 数据库SQL优化大总结之 百万级数据库优化方 ...

  9. Floyd算法模板--详解

    对于无权的图来说: 若从一顶点到另一顶点存在着一条路径,则称该路径长度为该路径上所经过的边的数目,它等于该路径上的顶点数减1. 由于从一顶点到另一顶点可能存在着多条路径,每条路径上所经过的边数可能不同 ...

  10. 【JZOJ3214】【SDOI2013】方程

    ╰( ̄▽ ̄)╭ 给定方程 X1+X 2+-+Xn=m 我们对第 1.. n1 个变量 进行一些限制 : X1≤A1 X2≤A2 - Xn1 ≤An1 我们对第 n1+1.. n1+1.. n1+ n2 ...