# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,decomposition def load_data():
'''
加载用于降维的数据
'''
# 使用 scikit-learn 自带的 iris 数据集
iris=datasets.load_iris()
return iris.data,iris.target #核化PCAKernelPCA模型
def test_KPCA(*data):
X,y=data
kernels=['linear','poly','rbf','sigmoid']
# 依次测试四种核函数
for kernel in kernels:
kpca=decomposition.KernelPCA(n_components=None,kernel=kernel)
kpca.fit(X)
print('kernel=%s --> lambdas: %s'% (kernel,kpca.lambdas_)) # 产生用于降维的数据集
X,y=load_data()
# 调用 test_KPCA
test_KPCA(X,y)

...................

....................

def plot_KPCA(*data):
'''
绘制经过 KernelPCA 降维到二维之后的样本点
'''
X,y=data
kernels=['linear','poly','rbf','sigmoid']
fig=plt.figure()
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2)) for i,kernel in enumerate(kernels):
kpca=decomposition.KernelPCA(n_components=2,kernel=kernel)
kpca.fit(X)
# 原始数据集转换到二维
X_r=kpca.transform(X)
## 两行两列,每个单元显示一种核函数的 KernelPCA 的效果图
ax=fig.add_subplot(2,2,i+1)
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,
color=color)
ax.set_xlabel("X[0]")
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title("kernel=%s"%kernel)
plt.suptitle("KPCA")
plt.show() # 调用 plot_KPCA
plot_KPCA(X,y)

def plot_KPCA_poly(*data):
'''
绘制经过 使用 poly 核的KernelPCA 降维到二维之后的样本点
'''
X,y=data
fig=plt.figure()
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
# poly 核的参数组成的列表。
# 每个元素是个元组,代表一组参数(依次为:p 值, gamma 值, r 值)
# p 取值为:3,10
# gamma 取值为 :1,10
# r 取值为:1,10
# 排列组合一共 8 种组合
Params=[(3,1,1),(3,10,1),(3,1,10),(3,10,10),(10,1,1),(10,10,1),(10,1,10),(10,10,10)]
for i,(p,gamma,r) in enumerate(Params):
# poly 核,目标为2维
kpca=decomposition.KernelPCA(n_components=2,kernel='poly',gamma=gamma,degree=p,coef0=r)
kpca.fit(X)
# 原始数据集转换到二维
X_r=kpca.transform(X)
## 两行四列,每个单元显示核函数为 poly 的 KernelPCA 一组参数的效果图
ax=fig.add_subplot(2,4,i+1)
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,
color=color)
ax.set_xlabel("X[0]")
# 隐藏 x 轴刻度
ax.set_xticks([])
# 隐藏 y 轴刻度
ax.set_yticks([])
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title(r"$ (%s (x \cdot z+1)+%s)^{%s}$"%(gamma,r,p))
plt.suptitle("KPCA-Poly")
plt.show() # 调用 plot_KPCA_poly
plot_KPCA_poly(X,y)

def plot_KPCA_rbf(*data):
'''
绘制经过 使用 rbf 核的KernelPCA 降维到二维之后的样本点
'''
X,y=data
fig=plt.figure()
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
# rbf 核的参数组成的列表。每个参数就是 gamma值
Gammas=[0.5,1,4,10]
for i,gamma in enumerate(Gammas):
kpca=decomposition.KernelPCA(n_components=2,kernel='rbf',gamma=gamma)
kpca.fit(X)
# 原始数据集转换到二维
X_r=kpca.transform(X)
## 两行两列,每个单元显示核函数为 rbf 的 KernelPCA 一组参数的效果图
ax=fig.add_subplot(2,2,i+1)
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,
color=color)
ax.set_xlabel("X[0]")
# 隐藏 x 轴刻度
ax.set_xticks([])
# 隐藏 y 轴刻度
ax.set_yticks([])
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title(r"$\exp(-%s||x-z||^2)$"%gamma)
plt.suptitle("KPCA-rbf")
plt.show() # 调用 plot_KPCA_rbf
plot_KPCA_rbf(X,y)

def plot_KPCA_sigmoid(*data):
'''
绘制经过 使用 sigmoid 核的KernelPCA 降维到二维之后的样本点
'''
X,y=data
fig=plt.figure()
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
# sigmoid 核的参数组成的列表。
Params=[(0.01,0.1),(0.01,0.2),(0.1,0.1),(0.1,0.2),(0.2,0.1),(0.2,0.2)]
# 每个元素就是一种参数组合(依次为 gamma,coef0)
# gamma 取值为: 0.01,0.1,0.2
# coef0 取值为: 0.1,0.2
# 排列组合一共有 6 种组合
for i,(gamma,r) in enumerate(Params):
kpca=decomposition.KernelPCA(n_components=2,kernel='sigmoid',gamma=gamma,coef0=r)
kpca.fit(X)
# 原始数据集转换到二维
X_r=kpca.transform(X)
## 三行两列,每个单元显示核函数为 sigmoid 的 KernelPCA 一组参数的效果图
ax=fig.add_subplot(3,2,i+1)
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,
color=color)
ax.set_xlabel("X[0]")
# 隐藏 x 轴刻度
ax.set_xticks([])
# 隐藏 y 轴刻度
ax.set_yticks([])
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title(r"$\tanh(%s(x\cdot z)+%s)$"%(gamma,r))
plt.suptitle("KPCA-sigmoid")
plt.show() # 调用 plot_KPCA_sigmoid
plot_KPCA_sigmoid(X,y)

吴裕雄 python 机器学习——核化PCAKernelPCA模型的更多相关文章

  1. 吴裕雄 python 机器学习——分类决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  2. 吴裕雄 python 机器学习——回归决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  3. 吴裕雄 python 机器学习——线性回归模型

    import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import tra ...

  4. 吴裕雄 python 机器学习——K均值聚类KMeans模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...

  5. 吴裕雄 python 机器学习——混合高斯聚类GMM模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import mixture from sklearn.metrics ...

  6. 吴裕雄 python 机器学习——层次聚类AgglomerativeClustering模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...

  7. 吴裕雄 python 机器学习——密度聚类DBSCAN模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...

  8. 吴裕雄 python 机器学习——等度量映射Isomap降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  9. 吴裕雄 python 机器学习——支持向量机非线性回归SVR模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

随机推荐

  1. 数据结构KMP算法中手算next数组

    总结一下今天的收获(以王道数据结构书上的为例子,虽然我没看它上面的...):其中竖着的一列值是模式串前缀和后缀最长公共前缀. 最后求得的结果符合书上的结果,如果是以-1开头的话就不需要再加1,如果是以 ...

  2. 机器学习作业(四)神经网络参数的拟合——Matlab实现

    题目下载[传送门] 题目简述:识别图片中的数字,训练该模型,求参数θ. 第1步:读取数据文件: %% Setup the parameters you will use for this exerci ...

  3. VSCode的Vue插件Vetur设置

    使用VSCode编写vue项目时安装了Vetur插件,但是每次alt+shift+f格式化代码的时候就有点让人头疼, 缩进自动变成了2个空格(习惯了用4个空格缩进,不同层级的代码看着明显一点),js代 ...

  4. 题解 P5613 【[MtOI2019]黑蚊子多】

    题目传送门 一道模拟题目,签到送分题. 您需要的知识 1.while循环 2.for循环 3.一维数组 思路: Step 1:按题目要求,定义a[],n,m,k int a[10001]; int n ...

  5. RN开发-Android原生交互

    在使用RN开发过程中,难免有些原生功能需要要自己来实现,下面总结一下在使用RN与原生开发交互. 1.在原生代码中定义实现类 1.1  首先继承 ReactContextBaseJaveModule抽象 ...

  6. AntDesign(React)学习-7 Menu添加事件

    今天花了大半天时间从老家回到工作地,路上因为肺炎封堵挺厉害,希望国家挺过这个难关,要不大家都失业可就惨了,上一篇做了一个展示数据的demo,这一篇研究antd Menu item点击事件 1.还是先看 ...

  7. js前端模块化的前世今生

    前言: <!DOCTYPE html> <html> <head> <title></title> </head> <sc ...

  8. 2019-08-07 纪中NOIP模拟B组

    T1 [JZOJ1385] 直角三角形 题目描述 二维平面坐标系中有N个位置不同的点. 从N个点选择3个点,问有多少选法使得这3个点形成直角三角形. 数据范围 $3 \leq N \leq 1500$ ...

  9. .htaccess详解

    http://www.cnblogs.com/adforce/archive/2012/11/23/2784664.html .htaccess是什么 .htaccess文件(或者"分布式配 ...

  10. selenium获取短暂出现元素的xpath路径

    1. pip install beautifulsoup4  :安装beautifulsoup4 2. from bs4 import BeautifulSoup 3. bs = BeautifulS ...