# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,decomposition def load_data():
'''
加载用于降维的数据
'''
# 使用 scikit-learn 自带的 iris 数据集
iris=datasets.load_iris()
return iris.data,iris.target #核化PCAKernelPCA模型
def test_KPCA(*data):
X,y=data
kernels=['linear','poly','rbf','sigmoid']
# 依次测试四种核函数
for kernel in kernels:
kpca=decomposition.KernelPCA(n_components=None,kernel=kernel)
kpca.fit(X)
print('kernel=%s --> lambdas: %s'% (kernel,kpca.lambdas_)) # 产生用于降维的数据集
X,y=load_data()
# 调用 test_KPCA
test_KPCA(X,y)

...................

....................

def plot_KPCA(*data):
'''
绘制经过 KernelPCA 降维到二维之后的样本点
'''
X,y=data
kernels=['linear','poly','rbf','sigmoid']
fig=plt.figure()
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2)) for i,kernel in enumerate(kernels):
kpca=decomposition.KernelPCA(n_components=2,kernel=kernel)
kpca.fit(X)
# 原始数据集转换到二维
X_r=kpca.transform(X)
## 两行两列,每个单元显示一种核函数的 KernelPCA 的效果图
ax=fig.add_subplot(2,2,i+1)
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,
color=color)
ax.set_xlabel("X[0]")
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title("kernel=%s"%kernel)
plt.suptitle("KPCA")
plt.show() # 调用 plot_KPCA
plot_KPCA(X,y)

def plot_KPCA_poly(*data):
'''
绘制经过 使用 poly 核的KernelPCA 降维到二维之后的样本点
'''
X,y=data
fig=plt.figure()
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
# poly 核的参数组成的列表。
# 每个元素是个元组,代表一组参数(依次为:p 值, gamma 值, r 值)
# p 取值为:3,10
# gamma 取值为 :1,10
# r 取值为:1,10
# 排列组合一共 8 种组合
Params=[(3,1,1),(3,10,1),(3,1,10),(3,10,10),(10,1,1),(10,10,1),(10,1,10),(10,10,10)]
for i,(p,gamma,r) in enumerate(Params):
# poly 核,目标为2维
kpca=decomposition.KernelPCA(n_components=2,kernel='poly',gamma=gamma,degree=p,coef0=r)
kpca.fit(X)
# 原始数据集转换到二维
X_r=kpca.transform(X)
## 两行四列,每个单元显示核函数为 poly 的 KernelPCA 一组参数的效果图
ax=fig.add_subplot(2,4,i+1)
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,
color=color)
ax.set_xlabel("X[0]")
# 隐藏 x 轴刻度
ax.set_xticks([])
# 隐藏 y 轴刻度
ax.set_yticks([])
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title(r"$ (%s (x \cdot z+1)+%s)^{%s}$"%(gamma,r,p))
plt.suptitle("KPCA-Poly")
plt.show() # 调用 plot_KPCA_poly
plot_KPCA_poly(X,y)

def plot_KPCA_rbf(*data):
'''
绘制经过 使用 rbf 核的KernelPCA 降维到二维之后的样本点
'''
X,y=data
fig=plt.figure()
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
# rbf 核的参数组成的列表。每个参数就是 gamma值
Gammas=[0.5,1,4,10]
for i,gamma in enumerate(Gammas):
kpca=decomposition.KernelPCA(n_components=2,kernel='rbf',gamma=gamma)
kpca.fit(X)
# 原始数据集转换到二维
X_r=kpca.transform(X)
## 两行两列,每个单元显示核函数为 rbf 的 KernelPCA 一组参数的效果图
ax=fig.add_subplot(2,2,i+1)
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,
color=color)
ax.set_xlabel("X[0]")
# 隐藏 x 轴刻度
ax.set_xticks([])
# 隐藏 y 轴刻度
ax.set_yticks([])
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title(r"$\exp(-%s||x-z||^2)$"%gamma)
plt.suptitle("KPCA-rbf")
plt.show() # 调用 plot_KPCA_rbf
plot_KPCA_rbf(X,y)

def plot_KPCA_sigmoid(*data):
'''
绘制经过 使用 sigmoid 核的KernelPCA 降维到二维之后的样本点
'''
X,y=data
fig=plt.figure()
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
# sigmoid 核的参数组成的列表。
Params=[(0.01,0.1),(0.01,0.2),(0.1,0.1),(0.1,0.2),(0.2,0.1),(0.2,0.2)]
# 每个元素就是一种参数组合(依次为 gamma,coef0)
# gamma 取值为: 0.01,0.1,0.2
# coef0 取值为: 0.1,0.2
# 排列组合一共有 6 种组合
for i,(gamma,r) in enumerate(Params):
kpca=decomposition.KernelPCA(n_components=2,kernel='sigmoid',gamma=gamma,coef0=r)
kpca.fit(X)
# 原始数据集转换到二维
X_r=kpca.transform(X)
## 三行两列,每个单元显示核函数为 sigmoid 的 KernelPCA 一组参数的效果图
ax=fig.add_subplot(3,2,i+1)
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,
color=color)
ax.set_xlabel("X[0]")
# 隐藏 x 轴刻度
ax.set_xticks([])
# 隐藏 y 轴刻度
ax.set_yticks([])
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title(r"$\tanh(%s(x\cdot z)+%s)$"%(gamma,r))
plt.suptitle("KPCA-sigmoid")
plt.show() # 调用 plot_KPCA_sigmoid
plot_KPCA_sigmoid(X,y)

吴裕雄 python 机器学习——核化PCAKernelPCA模型的更多相关文章

  1. 吴裕雄 python 机器学习——分类决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  2. 吴裕雄 python 机器学习——回归决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  3. 吴裕雄 python 机器学习——线性回归模型

    import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import tra ...

  4. 吴裕雄 python 机器学习——K均值聚类KMeans模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...

  5. 吴裕雄 python 机器学习——混合高斯聚类GMM模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import mixture from sklearn.metrics ...

  6. 吴裕雄 python 机器学习——层次聚类AgglomerativeClustering模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...

  7. 吴裕雄 python 机器学习——密度聚类DBSCAN模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...

  8. 吴裕雄 python 机器学习——等度量映射Isomap降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  9. 吴裕雄 python 机器学习——支持向量机非线性回归SVR模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

随机推荐

  1. 跳表的java实现,转载自网络,仅供自己学习使用

    文档结构: 1.代码结构 2.代码实现 1.代码结构 节点类: String key 键值 对跳跃表的操作都是根据键值进行的 Int value  实际值 Node  up,down,left,rig ...

  2. Win10安装4 —— 通过BIOS进入PE

    本文内容皆为作者原创,如需转载,请注明出处:https://www.cnblogs.com/xuexianqi/p/12369367.html 一:"BIOS"与"PE& ...

  3. 转载:dsp芯片的定点运算

    转自: http://ishare.iask.sina.com.cn/f/37179153.html

  4. Spring Boot的Web配置

    一.使用YML文件配置多套环境    

  5. Python目录结构规范

    在设计大型项目时需要规范目录结构. 假设你的项目名为foo, 我比较建议的最方便快捷目录结构这样就足够了: Foo/ |-- bin/ | |-- foo | |-- foo/ | |-- tests ...

  6. python3函数的参数

    函数的定义能简化代码的逻辑,对于函数的调用者来说,只需要知道如何正确的传递参数,以及知道函数将返回什么值就可以了,而函数内部的复杂逻辑被封装起来,调用者不必了解. 位置参数 调用函数时,传入实参的值按 ...

  7. jdk8-》allMatch、anyMatch、max、min函数

    allMatch函数: 检查是否匹配所有元素,只有全部符合才返回true boolean flag = list.stream().allMatch(obj->obj.length()>5 ...

  8. 17个IoC 软件包和项目

    原文:17个IoC 软件包和项目 1.Autofac GitHub:https://github.com/autofac/Autofac 描述:An addictive .NET IoC contai ...

  9. 【音乐欣赏】《I Don't Even Care About You》 - Missio

    曲名:I Don't Even Care About You 作者:Missio [00:31.18]Depressed again [00:34.66]Morning comes too fast ...

  10. [CCPC2019秦皇岛] E. Escape

    [CCPC2019秦皇岛E] Escape Link https://codeforces.com/gym/102361/problem/E Solution 观察到性质若干然后建图跑最大流即可. 我 ...