吴裕雄 python 机器学习——核化PCAKernelPCA模型
# -*- coding: utf-8 -*- import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,decomposition def load_data():
'''
加载用于降维的数据
'''
# 使用 scikit-learn 自带的 iris 数据集
iris=datasets.load_iris()
return iris.data,iris.target #核化PCAKernelPCA模型
def test_KPCA(*data):
X,y=data
kernels=['linear','poly','rbf','sigmoid']
# 依次测试四种核函数
for kernel in kernels:
kpca=decomposition.KernelPCA(n_components=None,kernel=kernel)
kpca.fit(X)
print('kernel=%s --> lambdas: %s'% (kernel,kpca.lambdas_)) # 产生用于降维的数据集
X,y=load_data()
# 调用 test_KPCA
test_KPCA(X,y)

...................

....................

def plot_KPCA(*data):
'''
绘制经过 KernelPCA 降维到二维之后的样本点
'''
X,y=data
kernels=['linear','poly','rbf','sigmoid']
fig=plt.figure()
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2)) for i,kernel in enumerate(kernels):
kpca=decomposition.KernelPCA(n_components=2,kernel=kernel)
kpca.fit(X)
# 原始数据集转换到二维
X_r=kpca.transform(X)
## 两行两列,每个单元显示一种核函数的 KernelPCA 的效果图
ax=fig.add_subplot(2,2,i+1)
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,
color=color)
ax.set_xlabel("X[0]")
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title("kernel=%s"%kernel)
plt.suptitle("KPCA")
plt.show() # 调用 plot_KPCA
plot_KPCA(X,y)

def plot_KPCA_poly(*data):
'''
绘制经过 使用 poly 核的KernelPCA 降维到二维之后的样本点
'''
X,y=data
fig=plt.figure()
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
# poly 核的参数组成的列表。
# 每个元素是个元组,代表一组参数(依次为:p 值, gamma 值, r 值)
# p 取值为:3,10
# gamma 取值为 :1,10
# r 取值为:1,10
# 排列组合一共 8 种组合
Params=[(3,1,1),(3,10,1),(3,1,10),(3,10,10),(10,1,1),(10,10,1),(10,1,10),(10,10,10)]
for i,(p,gamma,r) in enumerate(Params):
# poly 核,目标为2维
kpca=decomposition.KernelPCA(n_components=2,kernel='poly',gamma=gamma,degree=p,coef0=r)
kpca.fit(X)
# 原始数据集转换到二维
X_r=kpca.transform(X)
## 两行四列,每个单元显示核函数为 poly 的 KernelPCA 一组参数的效果图
ax=fig.add_subplot(2,4,i+1)
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,
color=color)
ax.set_xlabel("X[0]")
# 隐藏 x 轴刻度
ax.set_xticks([])
# 隐藏 y 轴刻度
ax.set_yticks([])
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title(r"$ (%s (x \cdot z+1)+%s)^{%s}$"%(gamma,r,p))
plt.suptitle("KPCA-Poly")
plt.show() # 调用 plot_KPCA_poly
plot_KPCA_poly(X,y)

def plot_KPCA_rbf(*data):
'''
绘制经过 使用 rbf 核的KernelPCA 降维到二维之后的样本点
'''
X,y=data
fig=plt.figure()
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
# rbf 核的参数组成的列表。每个参数就是 gamma值
Gammas=[0.5,1,4,10]
for i,gamma in enumerate(Gammas):
kpca=decomposition.KernelPCA(n_components=2,kernel='rbf',gamma=gamma)
kpca.fit(X)
# 原始数据集转换到二维
X_r=kpca.transform(X)
## 两行两列,每个单元显示核函数为 rbf 的 KernelPCA 一组参数的效果图
ax=fig.add_subplot(2,2,i+1)
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,
color=color)
ax.set_xlabel("X[0]")
# 隐藏 x 轴刻度
ax.set_xticks([])
# 隐藏 y 轴刻度
ax.set_yticks([])
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title(r"$\exp(-%s||x-z||^2)$"%gamma)
plt.suptitle("KPCA-rbf")
plt.show() # 调用 plot_KPCA_rbf
plot_KPCA_rbf(X,y)

def plot_KPCA_sigmoid(*data):
'''
绘制经过 使用 sigmoid 核的KernelPCA 降维到二维之后的样本点
'''
X,y=data
fig=plt.figure()
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
# sigmoid 核的参数组成的列表。
Params=[(0.01,0.1),(0.01,0.2),(0.1,0.1),(0.1,0.2),(0.2,0.1),(0.2,0.2)]
# 每个元素就是一种参数组合(依次为 gamma,coef0)
# gamma 取值为: 0.01,0.1,0.2
# coef0 取值为: 0.1,0.2
# 排列组合一共有 6 种组合
for i,(gamma,r) in enumerate(Params):
kpca=decomposition.KernelPCA(n_components=2,kernel='sigmoid',gamma=gamma,coef0=r)
kpca.fit(X)
# 原始数据集转换到二维
X_r=kpca.transform(X)
## 三行两列,每个单元显示核函数为 sigmoid 的 KernelPCA 一组参数的效果图
ax=fig.add_subplot(3,2,i+1)
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,
color=color)
ax.set_xlabel("X[0]")
# 隐藏 x 轴刻度
ax.set_xticks([])
# 隐藏 y 轴刻度
ax.set_yticks([])
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title(r"$\tanh(%s(x\cdot z)+%s)$"%(gamma,r))
plt.suptitle("KPCA-sigmoid")
plt.show() # 调用 plot_KPCA_sigmoid
plot_KPCA_sigmoid(X,y)

吴裕雄 python 机器学习——核化PCAKernelPCA模型的更多相关文章
- 吴裕雄 python 机器学习——分类决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
- 吴裕雄 python 机器学习——回归决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
- 吴裕雄 python 机器学习——线性回归模型
import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import tra ...
- 吴裕雄 python 机器学习——K均值聚类KMeans模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 吴裕雄 python 机器学习——混合高斯聚类GMM模型
import numpy as np import matplotlib.pyplot as plt from sklearn import mixture from sklearn.metrics ...
- 吴裕雄 python 机器学习——层次聚类AgglomerativeClustering模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 吴裕雄 python 机器学习——密度聚类DBSCAN模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 吴裕雄 python 机器学习——等度量映射Isomap降维模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——支持向量机非线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
随机推荐
- PATA-1151 LCA in a Binary Tree
题意:根据前序和中序建立树,寻找两个点的LCA. 我在之前的博客中写了关于LCA的多种求法. https://www.cnblogs.com/yy-1046741080/p/11505547.html ...
- SequoiaDB报告创建线程失败的解决办法
1.问题背景 对于分布式数据库和分布式环境,高并发和高性能压力的情况下,出现线程创建失败等等问题也是十分常见的,这时候就十分考虑数据库管理员的经验,需要能快速的定位到问题和瓶颈所在,快速解决.本文也是 ...
- 深度优先搜索 DFS(Depath First Search, DFS)
深度优先搜索是一种枚举所有完整路径以遍历所有情况的搜索方法.(不撞南墙不回头) DFS一般用递归来实现,其伪代码思路过程一般如下: void DFS(必要的参数){ if (符和遍历到一条完整路 ...
- 从原理到方案,一步步讲解web移动端实现自适应等比缩放
前言 在移动端做自适应,我们常用的有媒体查询,rem ,em,宽度百分比这几种方案.但是都各有其缺点. 首先拿媒体查询来说,在某一个宽度区间内只能使用一种样式,为了适应不同屏幕要,css的代码量就会增 ...
- python3练习100题——018
原题链接:http://www.runoob.com/python/python-exercise-example18.html 题目:求s=a+aa+aaa+aaaa+aa...a的值,其中a是一个 ...
- Python爬取mc皮肤【爬虫项目】
首先,找到一个皮肤网站,其中一个著名的皮肤网站就是 https://littleskin.cn .进入网站,我们就会见到一堆皮肤,这就是今天我们要爬的皮肤.给各位分享一下代码. PS:另外很多人在学习 ...
- html+css 文本折叠
先看效果: 收缩状态 展开状态 源代码: <!doctype html> <html lang="zh"> <head> <meta ch ...
- OpenCV函数 重映射
重映射是什么意思? 把一个图像中一个位置的像素放置到另一个图片指定位置的过程. 为了完成映射过程, 有必要获得一些插值为非整数像素坐标,因为源图像与目标图像的像素坐标不是一一对应的. 我们通过重映射来 ...
- Servlet文件上传下载
今天我们来学习Servlet文件上传下载 Servlet文件上传主要是使用了ServletInputStream读取流的方法,其读取方法与普通的文件流相同. 一.文件上传相关原理 第一步,构建一个up ...
- CentOS 7 如何设置为eth0网卡
参考文章https://www.linuxidc.com/Linux/2017-06/144973.htm 主要方法 1) 安装的时候,在内核选项中加上net.ifnames=0 biosdevnam ...