https://www.jianshu.com/p/d063804fb272

这篇文章来说说TensorFlow里与Queue有关的概念和用法。

其实概念只有三个:

  • Queue是TF队列和缓存机制的实现
  • QueueRunner是TF中对操作Queue的线程的封装
  • Coordinator是TF中用来协调线程运行的工具

虽然它们经常同时出现,但这三样东西在TensorFlow里面是可以单独使用的,不妨先分开来看待。

1. Queue

根据实现的方式不同,分成具体的几种类型,例如:

  • tf.FIFOQueue 按入列顺序出列的队列
  • tf.RandomShuffleQueue 随机顺序出列的队列
  • tf.PaddingFIFOQueue 以固定长度批量出列的队列
  • tf.PriorityQueue 带优先级出列的队列
  • ... ...

这些类型的Queue除了自身的性质不太一样外,创建、使用的方法基本是相同的。

创建函数的参数:

tf.FIFOQueue(capacity, dtypes, shapes=None, names=None ...)

Queue主要包含入列(enqueue)出列(dequeue)两个操作。enqueue操作返回计算图中的一个Operation节点,dequeue操作返回一个Tensor值。Tensor在创建时同样只是一个定义(或称为“声明”),需要放在Session中运行才能获得真正的数值。下面是一个单独使用Queue的例子:

import tensorflow as tf
tf.InteractiveSession() q = tf.FIFOQueue(2, "float")
init = q.enqueue_many(([0,0],)) x = q.dequeue()
y = x+1
q_inc = q.enqueue([y]) init.run()
q_inc.run()
q_inc.run()
q_inc.run()
x.eval() # 返回1
x.eval() # 返回2
x.eval() # 卡住

注意,如果一次性入列超过Queue Size的数据,enqueue操作会卡住,直到有数据(被其他线程)从队列取出。对一个已经取空的队列使用dequeue操作也会卡住,直到有新的数据(从其他线程)写入。

2. QueueRunner

Tensorflow的计算主要在使用CPU/GPU和内存,而数据读取涉及磁盘操作,速度远低于前者操作。因此通常会使用多个线程读取数据,然后使用一个线程消费数据。QueueRunner就是来管理这些读写队列的线程的。

QueueRunner需要与Queue一起使用(这名字已经注定了它和Queue脱不开干系),但并不一定必须使用Coordinator。看下面这个例子:

import tensorflow as tf
import sys
q = tf.FIFOQueue(10, "float")
counter = tf.Variable(0.0) #计数器
# 给计数器加一
increment_op = tf.assign_add(counter, 1.0)
# 将计数器加入队列
enqueue_op = q.enqueue(counter) # 创建QueueRunner
# 用多个线程向队列添加数据
# 这里实际创建了4个线程,两个增加计数,两个执行入队
qr = tf.train.QueueRunner(q, enqueue_ops=[increment_op, enqueue_op] * 2) # 主线程
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# 启动入队线程
qr.create_threads(sess, start=True)
for i in range(20):
print (sess.run(q.dequeue()))

增加计数的进程会不停的后台运行,执行入队的进程会先执行10次(因为队列长度只有10),然后主线程开始消费数据,当一部分数据消费被后,入队的进程又会开始执行。最终主线程消费完20个数据后停止,但其他线程继续运行,程序不会结束。

3. Coordinator

Coordinator是个用来保存线程组运行状态的协调器对象,它和TensorFlow的Queue没有必然关系,是可以单独和Python线程使用的。例如:

import tensorflow as tf
import threading, time # 子线程函数
def loop(coord, id):
t = 0
while not coord.should_stop():
print(id)
time.sleep(1)
t += 1
# 只有1号线程调用request_stop方法
if (t >= 2 and id == 1):
coord.request_stop() # 主线程
coord = tf.train.Coordinator()
# 使用Python API创建10个线程
threads = [threading.Thread(target=loop, args=(coord, i)) for i in range(10)] # 启动所有线程,并等待线程结束
for t in threads: t.start()
coord.join(threads)

将这个程序运行起来,会发现所有的子线程执行完两个周期后都会停止,主线程会等待所有子线程都停止后结束,从而使整个程序结束。由此可见,只要有任何一个线程调用了Coordinator的request_stop方法,所有的线程都可以通过should_stop方法感知并停止当前线程。

将QueueRunner和Coordinator一起使用,实际上就是封装了这个判断操作,从而使任何一个现成出现异常时,能够正常结束整个程序,同时主线程也可以直接调用request_stop方法来停止所有子线程的执行。

4. 在一起

在TensorFlow中用Queue的经典模式有两种,都是配合了QueueRunner和Coordinator一起使用的。

第一种,显式的创建QueueRunner,然后调用它的create_threads方法启动线程。例如下面这段代码:

import tensorflow as tf

# 1000个4维输入向量,每个数取值为1-10之间的随机数
data = 10 * np.random.randn(1000, 4) + 1
# 1000个随机的目标值,值为0或1
target = np.random.randint(0, 2, size=1000) # 创建Queue,队列中每一项包含一个输入数据和相应的目标值
queue = tf.FIFOQueue(capacity=50, dtypes=[tf.float32, tf.int32], shapes=[[4], []]) # 批量入列数据(这是一个Operation)
enqueue_op = queue.enqueue_many([data, target])
# 出列数据(这是一个Tensor定义)
data_sample, label_sample = queue.dequeue() # 创建包含4个线程的QueueRunner
qr = tf.train.QueueRunner(queue, [enqueue_op] * 4) with tf.Session() as sess:
# 创建Coordinator
coord = tf.train.Coordinator()
# 启动QueueRunner管理的线程
enqueue_threads = qr.create_threads(sess, coord=coord, start=True)
# 主线程,消费100个数据
for step in range(100):
if coord.should_stop():
break
data_batch, label_batch = sess.run([data_sample, label_sample])
# 主线程计算完成,停止所有采集数据的进程
coord.request_stop()
coord.join(enqueue_threads)

第二种,使用全局的start_queue_runners方法启动线程。

import tensorflow as tf

# 同时打开多个文件,显示创建Queue,同时隐含了QueueRunner的创建
filename_queue = tf.train.string_input_producer(["data1.csv","data2.csv"])
reader = tf.TextLineReader(skip_header_lines=1)
# Tensorflow的Reader对象可以直接接受一个Queue作为输入
key, value = reader.read(filename_queue) with tf.Session() as sess:
coord = tf.train.Coordinator()
# 启动计算图中所有的队列线程
threads = tf.train.start_queue_runners(coord=coord)
# 主线程,消费100个数据
for _ in range(100):
features, labels = sess.run([data_batch, label_batch])
# 主线程计算完成,停止所有采集数据的进程
coord.request_stop()
coord.join(threads)

在这个例子中,tf.train.string_input_produecer会将一个隐含的QueueRunner添加到全局图中(类似的操作还有tf.train.shuffle_batch等)。

由于没有显式地返回QueueRunner来用create_threads启动线程,这里使用了tf.train.start_queue_runners方法直接启动tf.GraphKeys.QUEUE_RUNNERS集合中的所有队列线程。

这两种方式在效果上是等效的。

参考文章

  1. tensorflow中关于队列使用的实验
  2. cs20si课件slides_09

作者:巾梵
链接:https://www.jianshu.com/p/d063804fb272
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

理解TensorFlow的Queue的更多相关文章

  1. python-积卷神经网络全面理解-tensorflow实现手写数字识别

    首先,关于神经网络,其实是一个结合很多知识点的一个算法,关于cnn(积卷神经网络)大家需要了解: 下面给出我之前总结的这两个知识点(基于吴恩达的机器学习) 代价函数: 代价函数 代价函数(Cost F ...

  2. 理解数据结构Priority Queue

    我们知道Queue是遵循先进先出(First-In-First-Out)模式的,但有些时候需要在Queue中基于优先级处理对象.举个例子,比方说我们有一个每日交易时段生成股票报告的应用程序,需要处理大 ...

  3. 4.3CNN卷积神经网络最详细最容易理解--tensorflow源码MLP对比

    自己开发了一个股票智能分析软件,功能很强大,需要的点击下面的链接获取: https://www.cnblogs.com/bclshuai/p/11380657.html 1.1  CNN卷积神经网络 ...

  4. Tensorflow的Queue读取数据机制

    参考链接:http://www.sohu.com/a/148245200_115128

  5. Tensorflow编程基础之Mnist手写识别实验+关于cross_entropy的理解

    好久没有静下心来写点东西了,最近好像又回到了高中时候的状态,休息不好,无法全心学习,恶性循环,现在终于调整的好一点了,听着纯音乐突然非常伤感,那些曾经快乐的大学时光啊,突然又慢慢的一下子出现在了眼前, ...

  6. TensorFlow中的通信机制——Rendezvous(二)gRPC传输

    背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 本篇是TensorFlow通信机制系列的第二篇文章,主要梳理使用gRPC网络传 ...

  7. TensorFlow中的通信机制——Rendezvous(一)本地传输

    背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 在TensorFlow源码中我们经常能看到一个奇怪的词——Rendezvous ...

  8. 第十二节,TensorFlow读取数据的几种方法以及队列的使用

    TensorFlow程序读取数据一共有3种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据. 从文件读取数据: 在TensorFlow图的起 ...

  9. 21个项目玩转深度学习:基于TensorFlow的实践详解02—CIFAR10图像识别

    cifar10数据集 CIFAR-10 是由 Hinton 的学生 Alex Krizhevsky 和 Ilya Sutskever 整理的一个用于识别普适物体的小型数据集.一共包含 10 个类别的 ...

随机推荐

  1. j.u.c系列(02)---线程池ThreadPoolExecutor---tomcat实现策略

    写在前面 本文是以同tomcat 7.0.57. jdk版本1.7.0_80为例. 线程池在tomcat中的创建实现为: public abstract class AbstractEndpoint& ...

  2. Jmeter自定义编写Java代码调用socket通信

    一.前言 最近需要测试一款手机游戏的性能,找不到啥录制脚本的工具,然后,另外想办法.性能测试实际上就是对服务器的承载能力的测试,和各种类型的手机客户端没有啥多大关系,手机再好,服务器负载不了,也不能够 ...

  3. 刚刚看到 PNaCl, 这才是我一直期待的跨平台的好东西!

    http://code.google.com/p/nativeclient/ https://developers.google.com/native-client/overview

  4. match_parent和fill_parent的区别(转)

    有网友表示对于很多工程中的MATCH_PARENT出现在layout中感到不明白,过去只有FILL_PARENT和WRAP_CONTENT那么match_parent到底是什么类型呢? 其实从Andr ...

  5. KTAG K-TAG ECU Programming Tool

    KTAG K-TAG ECU Programming Tool Master Version V2.1 +J-Link JLINK Without Token Limitation Highlight ...

  6. OpenOCD Debug Adapter Configuration

    Correctly installing OpenOCD includes making your operating system give OpenOCD access to debug adap ...

  7. stap 命令

    SystemTap accepts script as command line option or external file, for example: * Command-line script ...

  8. 在Visual Studio中使用活动图描述业务流程

    当希望描述某个流程的时候,用活动图表示. 在项目中添加一个名称为"Shopping"的文件夹. 把"Orders Model"这个UML类图拖放到Shoppin ...

  9. 在ASP.NET MVC中使用Knockout实践03,巧用data参数

    使用Knockout,当通过构造函数创建View Model的时候,构造函数的参数个数很可能是不确定的,于是就有了这样的一个解决方案:向构造函数传递一个object类型的参数data. <inp ...

  10. error CS0234: 命名空间“XXX”中不存在类型或命名空间名称“UserInfoVm”(是否缺少程序集引用?)

    □ 背景 UserInfoVm是在MVC的Models文件夹中的一个view model,这个view model是某部分视图的的页面Model.当加载这个部分视图的时候报了错. □ 思考 UserI ...