1.

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> v(m, vector<int>(n, ));
int i, j;
for(i = ; i < m; i++)
{
for(j = ; j < n; j++)
{
if( == i || == j)
v[i][j] = ;
else
v[i][j] = v[i-][j] + v[i][j-];
}
}
return v[m-][n-];
}
};

2.

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
if(m <= )
return ;
int n = obstacleGrid[].size();
if(n <= || obstacleGrid[][] == )
return ;
vector<vector<int>> v(m, vector<int>(n, ));
int i, j;
for(i = ; i < m; i++)
{
for(j = ; j < n; j++)
{
if(obstacleGrid[i][j] == )
v[i][j] = ;
else if( == i && j)
v[i][j] = v[][j-];
else if( == j && i)
v[i][j] = v[i-][];
else if(i && j)
v[i][j] = v[i-][j] + v[i][j-];
else
v[i][j] = ;
}
}
return v[m-][n-];
}
};

3.

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

int minPathSum(vector<vector<int> > &grid) {
if (grid.size()<=){
return ;
}
int i, j;
for(i=; i<grid.size(); i++){
for(j=; j<grid[i].size(); j++){
int top = i-< ? INT_MAX : grid[i-][j] ;
int left = j-< ? INT_MAX : grid[i][j-];
if (top==INT_MAX && left==INT_MAX){
continue;
}
grid[i][j] += (top < left? top: left);
}
}
return grid[grid.size()-][grid[].size()-];
}

62. 63. Unique Paths 64. Minimum Path Sum的更多相关文章

  1. [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )

    Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...

  2. &lt;LeetCode OJ&gt; 62. / 63. Unique Paths(I / II)

    62. Unique Paths My Submissions Question Total Accepted: 75227 Total Submissions: 214539 Difficulty: ...

  3. 刷题64. Minimum Path Sum

    一.题目说明 题目64. Minimum Path Sum,给一个m*n矩阵,每个元素的值非负,计算从左上角到右下角的最小路径和.难度是Medium! 二.我的解答 乍一看,这个是计算最短路径的,迪杰 ...

  4. leecode 每日解题思路 64 Minimum Path Sum

    题目描述: 题目链接:64 Minimum Path Sum 问题是要求在一个全为正整数的 m X n 的矩阵中, 取一条从左上为起点, 走到右下为重点的路径, (前进方向只能向左或者向右),求一条所 ...

  5. 【一天一道LeetCode】#64. Minimum Path Sum.md

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given a ...

  6. 【leetcode】62.63 Unique Paths

    62. Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the di ...

  7. 【LeetCode】64. Minimum Path Sum

    Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...

  8. [LeetCode] 64. Minimum Path Sum 最小路径和

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  9. [LC] 64. Minimum Path Sum

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

随机推荐

  1. 在ubuntu英文系统下使用中文输入法

    How to install and use Chinese Input Method in the English Locale in Ubuntu ?(1) Check if there exis ...

  2. 使用libcurl开源库和Duilib做的下载文件并显示进度条的小工具

    转载:http://blog.csdn.net/mfcing/article/details/43603525 转载:http://blog.csdn.net/infoworld/article/de ...

  3. C++ 表示一个区间值得方法

    C++中不允许这样的写法 85<= score <=100;你要想表示85<=score<=100的话只能这么写score>=85&&score<= ...

  4. Python3基础 list 访问列表中的列表的元素

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  5. Django组件(四) Django之Auth模块

    Auth模块概述 Auth模块是Django自带的用户认证模块: 我们在开发一个网站的时候,无可避免的需要设计实现网站的用户系统.此时我们需要实现包括用户注册.用户登录.用户认证.注销.修改密码等功能 ...

  6. Go第七篇之规范的接口

    接口本身是调用方和实现方均需要遵守的一种协议,大家按照统一的方法命名参数类型和数量来协调逻辑处理的过程. Go 语言中使用组合实现对象特性的描述.对象的内部使用结构体内嵌组合对象应该具有的特性,对外通 ...

  7. PMBOK十大知识领域是什么?

    PMBOK十大知识领域是:整合管理.范围管理.时间管理.成本管理.质量管理.人力资源管理.沟通管理.风险管理.采购管理.干系人管理. 各用一句话概括项目管理知识体系十大知识领域: 1.整合管理:其作用 ...

  8. shell编程学习笔记之特殊变量($0、$1、$2、 $?、 $# 、$@、 $*)

    特殊变量($0.$1.$2. $?. $# .$@. $*) shell编程中有一些特殊的变量可以使用.这些变量在脚本中可以作为全局变量来使用. 名称 说明 $0 脚本名称 $1-9 脚本执行时的参数 ...

  9. linux下命令行工具gcp显示拷贝进度条

    1.环境: ubuntu16.04 Linux jello 4.4.0-89-generic #112-Ubuntu SMP Mon Jul 31 19:38:41 UTC 2017 x86_64 x ...

  10. BZOJ 1044: [HAOI2008]木棍分割 DP 前缀和优化

    题目链接 咳咳咳,第一次没大看题解做DP 以前的我应该是这样的 哇咔咔,这tm咋做,不管了,先看个题解,再写代码 终于看懂了,卧槽咋写啊,算了还是抄吧 第一问类似于noip的那个跳房子,随便做 这里重 ...