Educational Codeforces Round 40 C. Matrix Walk( 思维)
Educational Codeforces Round 40 (Rated for Div. 2)
C. Matrix Walk
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output
There is a matrix A of size x × y filled with integers. For every
,
A**i, j = y(i - 1) + j. Obviously, every integer from [1..xy] occurs exactly once in this matrix.
You have traversed some path in this matrix. Your path can be described as a sequence of visited cells a1, a2, ..., a**n denoting that you started in the cell containing the number a1, then moved to the cell with the number a2, and so on.
From the cell located in i-th line and j-th column (we denote this cell as (i, j)) you can move into one of the following cells:
- (i + 1, j) — only if i < x;
- (i, j + 1) — only if j < y;
- (i - 1, j) — only if i > 1;
- (i, j - 1) — only if j > 1.
Notice that making a move requires you to go to an adjacent cell. It is not allowed to stay in the same cell. You don't know x and y exactly, but you have to find any possible values for these numbers such that you could start in the cell containing the integer a1, then move to the cell containing a2 (in one step), then move to the cell containing a3 (also in one step) and so on. Can you choose x and y so that they don't contradict with your sequence of moves?
Input
The first line contains one integer number n (1 ≤ n ≤ 200000) — the number of cells you visited on your path (if some cell is visited twice, then it's listed twice).
The second line contains n integers a1, a2, ..., a**n (1 ≤ a**i ≤ 109) — the integers in the cells on your path.
Output
If all possible values of x and y such that 1 ≤ x, y ≤ 109 contradict with the information about your path, print NO.
Otherwise, print YES in the first line, and in the second line print the values x and y such that your path was possible with such number of lines and columns in the matrix. Remember that they must be positive integers not exceeding 109.
Examples
input
Copy
81 2 3 6 9 8 5 2
output
Copy
YES3 3
input
Copy
61 2 1 2 5 3
output
Copy
NO
input
Copy
21 10
output
Copy
YES4 9
Note
The matrix and the path on it in the first test looks like this:

Also there exist multiple correct answers for both the first and the third examples.
题意:
有一个很大的方格,x行,y列,以及a(i,j)=(i-1)*y+j
现在给你n个数的数组,代表在方格中只走相邻节点的路径经过的节点数值,,让你是否能确定一个x和y,如果有,则输出对应的x和y,否则输出no。
思路:
如果是一个合法的路径序列,那么相邻的节点的数值之差的绝对值只可能是1和y,
如果差的绝对值size有多个值(即大于2),或者有2个值但没有1,那么一定是不存在的。
接下来就是size<=2的情况了,
假设y=size 中较大的那一个(如果相等,即都为1,那么直接特判输出答案即可,),
去再从1到n扫check下如果y是该值,是否满足该序列,
注意一下情况:
当前在左边界num,向num-1走
当前在右边界num,向num+1走
都是不合法的(已经排除了y=1的情况)
然后输出即可。
get:一般给你一些信息,让你确定一些值的时候,一般还会问你是否不存在满足该信息的数值,如果是输出no,那么我们就可以在找到假设的数值之后,再去过一遍给的信息,判定是否信息和数值对的上。这是一个很好的处理方法和思路。
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
set<int> st;
int y = 0;
int a[maxn];
int ans1 = 1e9;
int n;
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n;
repd(i, 1, n)
{
cin >> a[i];
}
if (n == 1)
{
cout << "YES" << endl;
cout << ans1 << " " << 1 << endl;
return 0;
}
repd(i, 2, n)
{
st.insert(abs(a[i] - a[i - 1]));
y = max(y, abs(a[i] - a[i - 1]));
if (a[i] == a[i - 1])
{
st.insert(10);
st.insert(11);
st.insert(14);
break;
}
}
if (st.size() > 2)
{
cout << "NO" << endl;
} else
{
if (st.size() == 2 && (*st.begin()) != 1)
{
cout << "NO" << endl;
}
else if (y == 1)
{
cout << "YES" << endl;
cout << ans1 << " " << 1 << endl;
} else
{
int isok = 1;
repd(i, 1, n - 1)
{
int cha = a[i + 1] - a[i];
if ((a[i] % y) == 0 && cha == 1)
{
isok = 0;
break;
} else if ((a[i] % y) == 1 && cha == -1)
{
isok = 0;
break;
}
}
if (isok)
{
cout << "YES" << endl;
cout << ans1 << " " << y << endl;
} else
{
cout << "NO" << endl;
}
}
}
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Educational Codeforces Round 40 C. Matrix Walk( 思维)的更多相关文章
- Educational Codeforces Round 40千名记
人生第二场codeforces.然而遇上了Education场这种东西 Educational Codeforces Round 40 下午先在家里睡了波觉,起来离开场还有10分钟. 但是突然想起来还 ...
- Educational Codeforces Round 40 F. Runner's Problem
Educational Codeforces Round 40 F. Runner's Problem 题意: 给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) ...
- Educational Codeforces Round 40 (Rated for Div. 2) Solution
从这里开始 小结 题目列表 Problem A Diagonal Walking Problem B String Typing Problem C Matrix Walk Problem D Fig ...
- Educational Codeforces Round 40 A B C D E G
A. Diagonal Walking 题意 将一个序列中所有的\('RU'\)或者\('UR'\)替换成\('D'\),问最终得到的序列最短长度为多少. 思路 贪心 Code #include &l ...
- Educational Codeforces Round 40 I. Yet Another String Matching Problem
http://codeforces.com/contest/954/problem/I 给你两个串s,p,求上一个串的长度为|p|的所有子串和p的差距是多少,两个串的差距就是每次把一个字符变成另一个字 ...
- Educational Codeforces Round 40 (Rated for Div. 2) 954G G. Castle Defense
题 OvO http://codeforces.com/contest/954/problem/G 解 二分答案, 对于每个二分的答案值 ANS,判断这个答案是否可行. 记 s 数组为题目中描述的 a ...
- Educational Codeforces Round 40 G. Castle Defense (二分+滑动数组+greedy)
G. Castle Defense time limit per test 1.5 seconds memory limit per test 256 megabytes input standard ...
- Educational Codeforces Round 57D(DP,思维)
#include<bits/stdc++.h>using namespace std;char s[100007];long long a[100007];long long dp[100 ...
- Educational Codeforces Round 40 (Rated for Div. 2)
A. Diagonal Walking time limit per test 1 second memory limit per test 256 megabytes input standard ...
随机推荐
- python-Web-flask-路由和视图
1 路由和视图: 简介: Flask框架包含两个核心:Werkzeug工具箱,Jinja2模板引擎 flask: 提供基本功能,属于轻量级 django: 提供相对完整功能,重量级 搭建虚拟环境 He ...
- leetcode mysql
给定一个 salary 表,如下所示,有 m = 男性 和 f = 女性 的值.交换所有的 f 和 m 值(例如,将所有 f 值更改为 m,反之亦然).要求只使用一个更新(Update)语句,并且没有 ...
- javaweb期末项目-stage3-项目测试和发布
项目综合报告.项目测试.项目部署 .rar---下载 说明:解压密码为袁老师的全名拼音(全小写) 相关链接: 项目结构:https://www.cnblogs.com/formyfish/p/1082 ...
- 在Ubuntu上安装Intellij IDEA并创建桌面快捷方式
环境信息 版本号 Ubuntu 18.04 LTS Intellij IDEA 2019.1.3 1.首先从官网获取安装包 官方下载地址传送门 然后我就在下载目录下得到了tar.gz的包 2.接下来开 ...
- kafka的offset相关知识
Offset存储模型 由于一个partition只能固定的交给一个消费者组中的一个消费者消费,因此Kafka保存offset时并不直接为每个消费者保存,而是以 groupid-topic-partit ...
- [转]史上最最最详细的手写Promise教程
我们工作中免不了运用promise用来解决异步回调问题.平时用的很多库或者插件都运用了promise 例如axios.fetch等等.但是你知道promise是咋写出来的呢? 别怕-这里有本promi ...
- 【AtCoder】ARC064
ARC064 C - Boxes and Candies 先把每个盒子都消到x 然后从前往后推,要求第二个的上界是x-前一个 因为我们要求靠后的那个尽量小,会对后面的修改影响尽量小 #include ...
- 复合模式MVC
这里也只说一下简单的原理. Model:模型实现处理数据的切逻辑. View:视图呈现模型的数据和状态. Control:解读视图对模型的操作. 视图和模型之间使用观察者模式,只要模型的状态改变视图立 ...
- Prime Number(CodeForces-359C)【快速幂/思维】
题意:已知X,数组arr[n],求一个分式的分子与分母的最大公因数.分子为ΣX^arr[i],分母为X^Σarr[i],数组为不递减序列. 思路:比赛的时候以为想出了正确思路,WA掉了很多发,看了别人 ...
- python 安装virtualenv和wxPython
有人说 Virtualenv.Fabric 和 PIP 是 Pythoneer 的三大神器 上一节说过了怎么安装PIP,下面继续安装virtualenv 安装wxPython时比较简单 sudo pi ...