1012 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组
1012 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组
时间限制: 1 s
空间限制: 128000 KB
题目等级 : 白银 Silver
题目描述 Description
输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数
条件: 1.P,Q是正整数
2.要求P,Q以x0为最大公约数,以y0为最小公倍数.
试求:满足条件的所有可能的两个正整数的个数.
输入描述 Input Description
二个正整数x0,y0
输出描述 Output Description
满足条件的所有可能的两个正整数的个数
样例输入 Sample Input
3 60
样例输出 Sample Output
4
数据范围及提示 Data Size & Hint
分类标签 Tags
数论 NOIP全国联赛普及组 大陆地区 2001年
/*
x*y=LCM(x,y)*GCD(x,y).
so枚举在√xy中的因子然后再看gcd(x,y)==a即可.
复杂度为O(√xy).
然后这题其实有更快做法.
式子两边同时除以gcd(x,y)
得到x/gcd(x,y)*y/gcd(x,y)=lcm/gcd(x,y).
然后这时x/gcd(x,y)与y/gcd(x,y)互质.
可以达到缩小范围的目的.
*/
#include<iostream>
#include<cstdio>
#define LL long long
using namespace std;
LL a,b,ans,tot;
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
int gcd(LL x,LL y)
{
if(!y) return x;
else return gcd(y,x%y);
}
void slove()
{
LL i;
for(i=1;i*i<=tot;i++)
{
if(tot%i==0)
{
LL j=tot/i;
if(gcd(j,i)==a) ans++;
}
}
if(i*i==tot&&gcd(i,i)==a) ans--;
cout<<ans*2;
}
int main()
{
cin>>a>>b;
tot=a*b;
slove();
return 0;
}
1012 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组的更多相关文章
- 【数论】【最大公约数】【枚举约数】CODEVS 1012 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组
对于一对数(p,q),若它们的gcd为x0,lcm为y0, 则:p*q/x0=y0,即q=x0*y0/p, 由于p.q是正整数,所以p.q都必须是x0*y0的约数. 所以O(sqrt(x0*y0))地 ...
- 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组
题目描述 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整 ...
- wikioi1012 最大公约数和最小公倍数问题(2001年NOIP全国联赛普及组)
题目描述 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整 ...
- codevs1011 数的计算 2001年NOIP全国联赛普及组
题目描述 Description 我们要求找出具有下列性质数的个数(包含输入的自然数n): 先输入一个自然数n(n<=1000),然后对此自然数按照如下方法进行处理: 1. 不 ...
- codevs 1014 装箱问题 2001年NOIP全国联赛普及组
题目描述 Description 有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数). 要求n个物品中,任取若 ...
- 【动态规划】【记忆化搜索】CODEVS 1011 数的计算 2001年NOIP全国联赛普及组
设答案为f(n),我们显然可以暴力地递归求解: f(n)=f(1)+f(2)+……+f(n/2). 但是n=1000,显然会超时. 考虑状态最多可能会有n种,经过大量的重复计算,所以可以记忆下来,减少 ...
- 【动态规划】【零一背包】CODEVS 1014 装箱问题 2001年NOIP全国联赛普及组
#include<cstdio> #include<algorithm> using namespace std; ],f[]; int main() { scanf(&quo ...
- codevs 1013 求先序排列 2001年NOIP全国联赛普及组 x
题目描述 Description 给出一棵二叉树的中序与后序排列.求出它的先序排列.(约定树结点用不同的大写字母表示,长度<=8). 输入描述 Inpu ...
- 1038 一元三次方程求解 2001年NOIP全国联赛提高组
题目描述 Description 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100 ...
随机推荐
- 图解django的生命周期
其实django的生命周期的大体框架就是这样,剩下的细致的,自己再补充! 图片实在是有点抽象! 谅解!! koala-----给你更多技术小干货
- P3748 [六省联考2017]摧毁“树状图”
传送门 显然是可以树形 $dp$ 的 对每个节点维护以下 $5$ 个东西 $1.$ 从当前节点出发往下的链的最大贡献 $2.$ 节点子树内不经过本身的路径最大贡献 $3.$ 节点子树内经过本身的路径的 ...
- Sharepoint 开启App 配置App
如果没有Enable app,打开app store的时候出出现错误: Sorry, apps are turned off. If you know who runs the server, tel ...
- asp.net 6.aspx页面
1.aspx页面的头部 <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Us ...
- electron-vue在npm run build时报错 ⨯ cannot execute cause=fork/exec C:\Users\801\AppData\Local\electron-builder\Cache\winCodeSign\winCodeSign-2.5.0\rcedit-ia32.exe: Access is denied.
问题描述 在electron-vue执行npm run build时报错,错误如下: ⨯ cannot execute cause=fork/exec C:\Users\801\AppData\Loc ...
- 【Git的基本操作一】文件初始化及设置签名
1. 本地库初始化 命令: git init 效果:
- Spring Boot WebFlux整合mongoDB
引入maven文件 <dependency> <groupId>org.springframework.boot</groupId> <artifactId& ...
- 抓住“新代码”的影子 —— 基于GoAhead系列网络摄像头多个漏洞分析
PDF 版本下载:抓住“新代码”的影子 —— 基于GoAhead系列网络摄像头多个漏洞分析 Author:知道创宇404实验室 Date:2017/03/19 一.漏洞背景 GoAhead作为世界上最 ...
- 简单了解Linux文件目录
/bin :获得最小的系统可操作性所需要的命令 /boot :内核和加载内核所需的文件 /dev :终端.磁盘.调制解调器等的设备项 /etc :关键的启动文件和配置文件 /home :用户的主目录 ...
- 关于Spring MVC写的不错的几篇博客
关于Spring MVC写的不错的几篇博客 https://my.oschina.net/kolbe/blog/509810 https://www.cnblogs.com/sunniest/p/45 ...