1012 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组
1012 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组
时间限制: 1 s
空间限制: 128000 KB
题目等级 : 白银 Silver
题目描述 Description
输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数
条件: 1.P,Q是正整数
2.要求P,Q以x0为最大公约数,以y0为最小公倍数.
试求:满足条件的所有可能的两个正整数的个数.
输入描述 Input Description
二个正整数x0,y0
输出描述 Output Description
满足条件的所有可能的两个正整数的个数
样例输入 Sample Input
3 60
样例输出 Sample Output
4
数据范围及提示 Data Size & Hint
分类标签 Tags
数论 NOIP全国联赛普及组 大陆地区 2001年
/*
x*y=LCM(x,y)*GCD(x,y).
so枚举在√xy中的因子然后再看gcd(x,y)==a即可.
复杂度为O(√xy).
然后这题其实有更快做法.
式子两边同时除以gcd(x,y)
得到x/gcd(x,y)*y/gcd(x,y)=lcm/gcd(x,y).
然后这时x/gcd(x,y)与y/gcd(x,y)互质.
可以达到缩小范围的目的.
*/
#include<iostream>
#include<cstdio>
#define LL long long
using namespace std;
LL a,b,ans,tot;
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
int gcd(LL x,LL y)
{
if(!y) return x;
else return gcd(y,x%y);
}
void slove()
{
LL i;
for(i=1;i*i<=tot;i++)
{
if(tot%i==0)
{
LL j=tot/i;
if(gcd(j,i)==a) ans++;
}
}
if(i*i==tot&&gcd(i,i)==a) ans--;
cout<<ans*2;
}
int main()
{
cin>>a>>b;
tot=a*b;
slove();
return 0;
}
1012 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组的更多相关文章
- 【数论】【最大公约数】【枚举约数】CODEVS 1012 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组
对于一对数(p,q),若它们的gcd为x0,lcm为y0, 则:p*q/x0=y0,即q=x0*y0/p, 由于p.q是正整数,所以p.q都必须是x0*y0的约数. 所以O(sqrt(x0*y0))地 ...
- 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组
题目描述 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整 ...
- wikioi1012 最大公约数和最小公倍数问题(2001年NOIP全国联赛普及组)
题目描述 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整 ...
- codevs1011 数的计算 2001年NOIP全国联赛普及组
题目描述 Description 我们要求找出具有下列性质数的个数(包含输入的自然数n): 先输入一个自然数n(n<=1000),然后对此自然数按照如下方法进行处理: 1. 不 ...
- codevs 1014 装箱问题 2001年NOIP全国联赛普及组
题目描述 Description 有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数). 要求n个物品中,任取若 ...
- 【动态规划】【记忆化搜索】CODEVS 1011 数的计算 2001年NOIP全国联赛普及组
设答案为f(n),我们显然可以暴力地递归求解: f(n)=f(1)+f(2)+……+f(n/2). 但是n=1000,显然会超时. 考虑状态最多可能会有n种,经过大量的重复计算,所以可以记忆下来,减少 ...
- 【动态规划】【零一背包】CODEVS 1014 装箱问题 2001年NOIP全国联赛普及组
#include<cstdio> #include<algorithm> using namespace std; ],f[]; int main() { scanf(&quo ...
- codevs 1013 求先序排列 2001年NOIP全国联赛普及组 x
题目描述 Description 给出一棵二叉树的中序与后序排列.求出它的先序排列.(约定树结点用不同的大写字母表示,长度<=8). 输入描述 Inpu ...
- 1038 一元三次方程求解 2001年NOIP全国联赛提高组
题目描述 Description 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100 ...
随机推荐
- __declspec(dllexport)的作用
加了之后发现,用ollydbg导入dll,可以自动判断某个函数是导出函数
- Ruby Rails学习中:调试信息和 Rails 的三种环境,Users 资源,调试器,Gravatar 头像和侧边栏
注册 一.调试信息和 Rails 环境 现在咱们要实现的用户资料页面是我们这个应用中第一个真正意义上的动态页面.虽然视图的代码不会动态改变, 不过每个用户资料页面显示的内容却是从数据库中读取的.添加动 ...
- 计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践
计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践 2018年06月13日 16:38:11 轻春 阅读数 6004更多 分类专栏: 机器学习 机器学习荐货情报局 版 ...
- 26-Perl 包和模块
1.Perl 包和模块Perl 中每个包有一个单独的符号表,定义语法为:package mypack;此语句定义一个名为 mypack 的包,在此后定义的所有变量和子程序的名字都存贮在该包关联的符号表 ...
- json在线格式化校验
推荐个在线工具箱,json在线格式化转换编码,挺好用的 https://www.codejson.com/
- java中成员变量和局部变量在内存中的分配
对于成员变量和局部变量:成员变量就是方法外部,类的内部定义的变量:局部变量就是方法或语句块内部定义的变量.局部变量必须初始化. 形式参数是局部变量,局部变量中基础数据类型的引用和值都存储在栈中,对象引 ...
- shell 中的 set -e 和 set +e的区别
区别: set -e : 执行的时候如果出现了返回值为非零,整个脚本 就会立即退出 set +e: 执行的时候如果出现了返回值为非零将会继续执行下面的脚本 set -e 命令用法总结如下:1. 当命令 ...
- vscode快捷操作
Ctrl + ` 打开或关闭终端 Ctrl + Shift + n 打开或关闭新窗口 Ctrl + Shift + f 打开视图,显示编辑器左侧 ...
- KTV歌曲播放原理
歌曲播放原理 一开始要有一个Song类,在类外面定义枚举,在里面放四种状态, 为:已播放,未播放,重唱,切歌 在类里把歌曲名称和路径封装成字段 起初每首歌的状态默认为未播放 通过MadeSongPla ...
- 7、TortoiseSVN
7.TortoiseSVN TortoiseSVN图标介绍: 目录空白处右键→TortoiseSVN→Settings 7.1独立将工程上传到服务器的思路 12.2针对archetype-catalo ...