计数原理,递推,求从左边能看到l个棒子,右边能看到r个棒子的方案数目
题意
有高为 1, 2, …, n 的 n 根杆子排成一排, 从左向右能看到 L 根, 从右向左能看到 R 根。求有多少种可能的排列方式。
solution:
数据范围仅200,本来是往组合数学方面想的,看到了这个200就放弃了念头,果然是dp
定义dp[i][j][k]是用了高度为1~i的杆子,从左边能看到j个,从右边能看到k个
如果从1转移到n很困难,因为放一个高的杆子进去会造成很多的遮挡影响,是几乎不能维护的。于是考虑从n转移到1,即先放比较高的杆子
加上放好了2~n高度的杆子,再放高度为1的杆子仅有三种情况
1.放在最左边。仅仅是从左看能多看到一个 dp[i][j][k]+=dp[i-1][j-1][k]
2.放在最右边,同理
3.放在中间,一定会被挡住。i-1根杆子间有(i-2)个,则dp[i][j][k]+=dp[i-1][j][k]*(i-2)。
其实这里i的定义已经发生了一点变化,但是状态转移是很容易理解的
为什么可以把i等效定义为i个,而不是1~i呢?其实这只需要代表是i根高度不同的杆子,2~i的杆子全部砍1,相对高度没有变,也就等效成了1~i-1的杆子
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<queue>
#include<cstring>
#define mp make_pair
#define pb push_back
#define first fi
#define second se
#define pw(x) (1ll << (x))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define rep(i,l,r) for(int i=(l);i<(r);i++)
#define per(i,r,l) for(int i=(r);i>=(l);i--)
#define FOR(i,l,r) for(int i=(l);i<=(r);i++)
#define eps 1e-9
#define PIE acos(-1)
#define cl(a,b) memset(a,b,sizeof(a))
#define fastio ios::sync_with_stdio(false);cin.tie(0);
#define lson l , mid , ls
#define rson mid + 1 , r , rs
#define ls (rt<<1)
#define rs (ls|1)
#define INF 0x3f3f3f3f
#define LINF 0x3f3f3f3f3f3f3f3f
#define freopen freopen("in.txt","r",stdin);
#define cfin ifstream cin("in.txt");
#define lowbit(x) (x&(-x))
#define sqr(a) a*a
#define ll long long
#define ull unsigned long long
#define vi vector<int>
#define pii pair<int, int>
#define dd(x) cout << #x << " = " << (x) << ", "
#define de(x) cout << #x << " = " << (x) << "\n"
#define endl "\n"
using namespace std;
//**********************************
ll dp[][][];//dp[i][j][k]表示i个棒子从左边能看到j个右边能看到k个的方案数
//**********************************
void Init()
{
dp[][][]=;
FOR(i,,)FOR(j,,i)FOR(k,,i-j+)dp[i][j][k]=dp[i-][j-][k]+dp[i-][j][k-]+dp[i-][j][k]*(i-);
}
//**********************************
int main()
{
Init();
int T;cin>>T;
while(T--){
int a,b,c;cin>>a>>b>>c;
cout<<dp[a][b][c]<<endl;
}
return ;
}
计数原理,递推,求从左边能看到l个棒子,右边能看到r个棒子的方案数目的更多相关文章
- NYOJ-301递推求值
递推求值 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 给你一个递推公式: f(x)=a*f(x-2)+b*f(x-1)+c 并给你f(1),f(2)的值,请求出f ...
- 算法笔记_091:蓝桥杯练习 递推求值(Java)
目录 1 问题描述 2 解决方案 1 问题描述 问题描述 已知递推公式: F(n, 1)=F(n-1, 2) + 2F(n-3, 1) + 5, F(n, 2)=F(n-1, 1) + 3F(n- ...
- NYOJ——301递推求值(矩阵快速幂)
递推求值 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 给你一个递推公式: f(x)=a*f(x-2)+b*f(x-1)+c 并给你f(1),f(2)的值,请求出f(n)的 ...
- poj 3744 Scout YYF I(递推求期望)
poj 3744 Scout YYF I(递推求期望) 题链 题意:给出n个坑,一个人可能以p的概率一步一步地走,或者以1-p的概率跳过前面一步,问这个人安全通过的概率 解法: 递推式: 对于每个坑, ...
- Java实现 蓝桥杯 算法提高 递推求值
算法提高 递推求值 时间限制:1.0s 内存限制:256.0MB 问题描述 已知递推公式: F(n, 1)=F(n-1, 2) + 2F(n-3, 1) + 5, F(n, 2)=F(n-1, 1) ...
- P2602 [ZJOI2010]数字计数(递推)
P2602 [ZJOI2010]数字计数 思路: 首先考虑含有前导0的情况,可以发现在相同的\(i\)位数中,每个数的出现次数都是相等的.所以我们可以设\(f(i)\)为\(i\)位数每个数的出现次数 ...
- poj 2096 Collecting Bugs 【概率DP】【逆向递推求期望】
Collecting Bugs Time Limit: 10000MS Memory Limit: 64000K Total Submissions: 3523 Accepted: 1740 ...
- HDU 5446——Unknown Treasure——————【CRT+lucas+exgcd+快速乘+递推求逆元】
Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number o ...
- 【poj2478-Farey Sequence】递推求欧拉函数-欧拉函数的几个性质和推论
http://poj.org/problem?id=2478 题意:给定一个数x,求<=x的数的欧拉函数值的和.(x<=10^6) 题解:数据范围比较大,像poj1248一样的做法是不可行 ...
随机推荐
- Arcgis for js加载百度地图
看转:https://blog.csdn.net/qq_41046162/article/details/80248281 通过学习了一段时间的arcgis for js,让我来讲一下如何在arcgi ...
- 关于工作单元模式——工作单元模式与EF结合的使用
工作单元模式往往和仓储模式一起使用,本篇文章讲到的是工作单元模式和仓储模式一起用来在ef外面包一层,其实EF本身就是工作单元模式和仓储模式使用的经典例子,其中DbContext就是工作单元,而每个Db ...
- 移植 Linux 内核
目录 更新记录 1.Linux 版本及特点 2.打补丁.编译.烧写.启动内核 3.内核源码文件结构 4.内核架构分析 4.1 内核配置 4.2 Makefile架构分析 4.3 Kconfig 架构文 ...
- 使用私有api统计ios app运行时间及次数
利用<iphone SprintBoard部分私有API总结>中提到的私有API,可以做很多越狱以前实现不了的事情. 比如,利用一个后台运行的app,监控该iphone上所有app的运行次 ...
- DS1302时钟
采用串行数据传送方式,SPI 3线接口 SPI总线 SPI接口是以主从方式工作的,通常有一个主器件和一个或多个从器件 MOSI – 主器件数据输出,从器件数据输入 MISO – 主器件数据输入,从器件 ...
- 【url ---lib___】笔趣阁(抓取斗罗大陆完整)和(三寸天堂)
# coding=gbk #因为在黑屏下执行,所以代码会使用GBK url='http://www.biquge.info/10_10218/' UA={"User-Agent": ...
- 08_Hive中的各种Join操作
1.关于hive中的各种join Hive中有许多的Join操作,例如:LEFT.RIGHT和FULL OUTER JOIN,INNER JOIN,LEFT SEMI JOIN等: 1.1.准备两组数 ...
- input checkbod 全选 反选
<script> var CheckBox=div.getElementsByTagName('input'); ...
- loj2587 「APIO2018」铁人两项[圆方树+树形DP]
主要卡在一个结论上..关于点双有一个常用结论,也经常作为在圆方树/简单路径上的良好性质,对于任意点双内互不相同的三点$s,c,t$,都存在简单路径$s\to c\to t$,证明不会.可以参见clz博 ...
- Java队列与栈转换中String.Valueof()使用
1. 由 基本数据型态转换成 String String 类别中已经提供了将基本数据型态转换成 String 的 static 方法 也就是 String.valueOf() 这个参数多载的方法 有下 ...