https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

http://www.slideshare.net/databricks/a-deep-dive-into-structured-streaming

 

Structured Streaming is a scalable and fault-tolerant stream processing engine built on the Spark SQL engine.
You can express your streaming computation the same way you would express a batch computation on static data.

The Spark SQL engine will take care of running it incrementally and continuously and updating the final result as streaming data continues to arrive. You can use the Dataset/DataFrame API in Scala, Java or Python to express streaming aggregations, event-time windows, stream-to-batch joins, etc. The computation is executed on the same optimized Spark SQL engine.

Finally, the system ensures end-to-end exactly-once fault-tolerance guarantees through checkpointing and Write Ahead Logs.

In short, Structured Streaming provides fast, scalable, fault-tolerant, end-to-end exactly-once stream processing without the user having to reason about streaming.

你可以像在静态数据源上一样,使用DataFrame接口去执行SQL,这些SQL会跑在和batch相同的optimized Spark SQL engine上
并且可以保证exactly-once fault-tolerance,通过checkpointing and Write Ahead Logs

 

只是将DStream抽象,换成DataFrame,即table

这样就可以进行结构化的操作,

并且基本和处理batch数据一样,

可以看到差别不大

 

整个过程是这样的,

可以看到,这里的output模式是complete,因为有聚合,所以每次输出需要,输出until now的统计数据

输出的mode,分为,

The “Output” is defined as what gets written out to the external storage. The output can be defined in different modes

  • Complete Mode - The entire updated Result Table will be written to the external storage. It is up to the storage connector to decide how to handle writing of the entire table.

  • Append Mode - Only the new rows appended in the Result Table since the last trigger will be written to the external storage. This is applicable only on the queries where existing rows in the Result Table are not expected to change.

  • Update Mode - Only the rows that were updated in the Result Table since the last trigger will be written to the external storage (not available yet in Spark 2.0). Note that this is different from the Complete Mode in that this mode does not output the rows that are not changed.

complete mode上面的例子已经给出

append mode,就是每次只输出增量,这个对于没有聚合的场景就是合适的

 

Window Operations on Event Time

spark认为自己对于Event time是天然支持的,只需要把它作为dataframe里面的一个列,然后做groupby即可以

然后对于late data,因为是增量输出的,所以也是可以handle的

 

Fault Tolerance Semantics

Delivering end-to-end exactly-once semantics was one of key goals behind the design of Structured Streaming.
To achieve that, we have designed the Structured Streaming sources, the sinks and the execution engine to reliably track the exact progress of the processing so that it can handle any kind of failure by restarting and/or reprocessing. Every streaming source is assumed to have offsets (similar to Kafka offsets, or Kinesis sequence numbers) to track the read position in the stream. The engine uses checkpointing and write ahead logs to record the offset range of the data being processed in each trigger. The streaming sinks are designed to be idempotent for handling reprocessing. Together, using replayable sources and idempotant sinks, Structured Streaming can ensure end-to-end exactly-once semantics under any failure.

首先依赖source是可以依据offset replay,而sink是幂等的,这样只需要通过Write Ahead Logs记录offset,checkpoint记录state,就可以做到exactly once,因为本质是batch

Structured Streaming Programming Guide的更多相关文章

  1. Structured Streaming Programming Guide结构化流编程指南

    目录 Overview Quick Example Programming Model Basic Concepts Handling Event-time and Late Data Fault T ...

  2. Spark Streaming Programming Guide

    参考,http://spark.incubator.apache.org/docs/latest/streaming-programming-guide.html Overview SparkStre ...

  3. spark第六篇:Spark Streaming Programming Guide

    预览 Spark Streaming是Spark核心API的扩展,支持高扩展,高吞吐量,实时数据流的容错流处理.数据可以从Kafka,Flume或TCP socket等许多来源获取,并且可以使用复杂的 ...

  4. Spark Structured streaming框架(1)之基本使用

     Spark Struntured Streaming是Spark 2.1.0版本后新增加的流计算引擎,本博将通过几篇博文详细介绍这个框架.这篇是介绍Spark Structured Streamin ...

  5. Spark Structured Streaming框架(2)之数据输入源详解

    Spark Structured Streaming目前的2.1.0版本只支持输入源:File.kafka和socket. 1. Socket Socket方式是最简单的数据输入源,如Quick ex ...

  6. Spark Structured Streaming框架(5)之进程管理

    Structured Streaming提供一些API来管理Streaming对象.用户可以通过这些API来手动管理已经启动的Streaming,保证在系统中的Streaming有序执行. 1. St ...

  7. Spark Structured Streaming框架(4)之窗口管理详解

    1. 结构 1.1 概述 Structured Streaming组件滑动窗口功能由三个参数决定其功能:窗口时间.滑动步长和触发时间. 窗口时间:是指确定数据操作的长度: 滑动步长:是指窗口每次向前移 ...

  8. Spark Structured Streaming框架(3)之数据输出源详解

    Spark Structured streaming API支持的输出源有:Console.Memory.File和Foreach.其中Console在前两篇博文中已有详述,而Memory使用非常简单 ...

  9. Spark Structured Streaming框架(2)之数据输入源详解

    Spark Structured Streaming目前的2.1.0版本只支持输入源:File.kafka和socket. 1. Socket Socket方式是最简单的数据输入源,如Quick ex ...

随机推荐

  1. node Later定时任务

    var later = require('later'); later.date.localTime(); var basic = {h: [15], m: [40], s: [0]}; var co ...

  2. URI和URL的区别

    这两天在写代码的时候,由于涉及到资源的位置,因此,需要在Java Bean中定义一些字段,用来表示资源的位置,比如:imgUrl,logoUri等等.但是,每次定义的时候,心里都很纠结,是该用imgU ...

  3. 桌面窗体应用程序,FormClosing事件

    private void Form1_FormClosing(object sender, FormClosingEventArgs e) { //主窗体关闭时,弹出对话框.判断对话框的返回值(即用户 ...

  4. 字符编码GB2312、GBK、UTF-8的区别

    本文来自:javaeye网站 UTF8是国际编码,它的通用性比较好,外国人也可以浏览论坛 GBK是国家编码,通用性比UTF8差,不过UTF8占用的数据库比GBK大~ 提示:如果您的网站客户群体主要是面 ...

  5. eclispe报错PermGen space

    最近使用eclipse做开发,使用的服务器是tomcat,但在启动时报了Caused by: java.lang.OutOfMemoryError: PermGen space的异常. 这个错误很常见 ...

  6. 合成模式(Composite)-结构型

    原理 合成模式属于对象的结构模式,有时又叫做“部分——整体”模式.合成模式将对象组织到树结构中,可以用来描述整体与部分的关系.合成模式可以使客户端将单纯元素与复合元素同等看待. 有时候又叫做部分-整体 ...

  7. POJ3250 Bad Hair Day(单调栈)

    题目大概就是给一个序列,问每个数右边有几个连续且小于该数的数. 用单调递减栈搞搞就是了. #include<cstdio> #include<cstring> using na ...

  8. BZOJ4361 : isn

    设$f[i]$表示长度为$i$的不下降子序列的个数. 考虑容斥,对于长度为$i$的子序列,如果操作不合法,那么之前一定是一个长度为$i+1$的子序列,所以答案$=\sum_{i=1}^n(f[i]\t ...

  9. HTML的快速写法:Emmet和Haml

    HTML代码写起来很费事,因为它的标签多. 一种解决方法是采用模板, 在别人写好的骨架内,填入自己的内容.还有一种就是我今天想要介绍的方法—-简写法. 常用的简写法,目前主要是Emmet和Haml两种 ...

  10. Android解析XML(PULL方式)

    PULL 的工作原理: XML pull提供了开始元素和结束元素.当某个元素开始时,可以调用parser.nextText从XML文档中提取所有字符数据.当解析到一个文档结束时,自动生成EndDocu ...