Description

刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal
的or)操作。选择数字i的概率是p[i]。保证0<=p[i]<=1,Σp[i]=1问期望多少秒后,你手上的数字变成2^n-1。

Input

第一行输入n表示n个元素,第二行输入2^n个数,第i个数表示选到i-1的概率

Output

仅输出一个数表示答案,绝对误差或相对误差不超过1e-6即可算通过。如果无解则要输出INF

Sample Input

2
0.250.250.250.25

Sample Output

2.6666666667

HINT

对于100%的数据,n<=20

思路:可以min_max容斥来做,问题的关键就是求出得到所有子集X的期望F(X)就可以了,P(X)的概率为所有对X有贡献的p[x]之和(x是所有和X有交集的x,即便x含有X没有的部分);

我们倒过来求与X交集为空的部分的概率,即M^X的子集的概率,这部分可以用高维前缀和来做。

    for(int i=;i<N;i++)
for(int j=;j<(<<N);j++)
if(j&(<<i)) F[j]+=F[j^(<<i)];
这个代码可以得到子集的前缀和。 复杂度是O(N*^N)

超集的写法:

    for(int i=;i<N;i++)
for(int j=;j<(<<N);j++)
if(!j&(<<i)) F[j]+=F[j|(<<i)];
#include<bits/stdc++.h>
using namespace std;
const int maxn=<<;
double P[maxn],ans;int N,sum,M;
void dfs(int pos,int now,int cnt)
{
if(pos==N){
if(cnt>=){
if(cnt&) ans+=1.0/(1.0-P[(M-)^now]);
else ans-=1.0/(1.0-P[(M-)^now]);
}
return ;
}
dfs(pos+,now|(<<pos),cnt+);
dfs(pos+,now,cnt);
}
int main()
{
scanf("%d",&N); M=<<N;
for(int i=;i<M;i++){
scanf("%lf",&P[i]);
if(P[i]>) sum|=i;
}
if(sum!=M-) return puts("INF"),;
for(int i=;i<N;i++)
for(int j=;j<M;j++)
if(j&(<<i)) P[j]+=P[j^(<<i)];
dfs(,,);
printf("%.6lf\n",ans);
return ;
}
//2 0.25 0.25 0.25 0.25

当然,为1的个数我们也可以预处理出来。就不用DFS了。

#include<bits/stdc++.h>
using namespace std;
const int maxn=<<;
double P[maxn],ans;int N,sum,M,num[maxn];
int main()
{
scanf("%d",&N); M=<<N;
for(int i=;i<M;i++){
scanf("%lf",&P[i]);
if(P[i]>) sum|=i;
}
if(sum!=M-) return puts("INF"),;
for(int i=;i<M;i++) num[i]=num[i>>]+(i&);
for(int i=;i<N;i++)
for(int j=;j<M;j++)
if(j&(<<i)) P[j]+=P[j^(<<i)];
for(int i=;i<M;i++)
ans+=(num[i]&?1.0:-1.0)/(-P[(M-)^i]);
printf("%.6lf\n",ans);
return ;
}
//2 0.25 0.25 0.25 0.25

BZOJ4036:按位或 (min_max容斥&高维前缀和)的更多相关文章

  1. [luogu 3175] [HAOI2015]按位或(min-max容斥+高维前缀和)

    [luogu 3175] [HAOI2015]按位或 题面 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行按位或运算.问期望多少秒后,你手上的数字变成2^n ...

  2. luoguP3175 [HAOI2015]按位或 min-max容斥 + 高维前缀和

    考虑min-max容斥 \(E[max(S)] = \sum \limits_{T \subset S} min(T)\) \(min(T)\)是可以被表示出来 即所有与\(T\)有交集的数的概率的和 ...

  3. Codeforces.449D.Jzzhu and Numbers(容斥 高维前缀和)

    题目链接 \(Description\) 给定\(n\)个正整数\(a_i\).求有多少个子序列\(a_{i_1},a_{i_2},...,a_{i_k}\),满足\(a_{i_1},a_{i_2}, ...

  4. [Hdu-6053] TrickGCD[容斥,前缀和]

    Online Judge:Hdu6053 Label:容斥,前缀和 题面: 题目描述 给你一个长度为\(N\)的序列A,现在让你构造一个长度同样为\(N\)的序列B,并满足如下条件,问有多少种方案数? ...

  5. 从 0 开始的min_max容斥证明

    二项式反演 \[f_n=\sum\limits_{i=0}^nC^i_ng_i \Leftrightarrow g_n=\sum\limits_{i=0}^n{(-1)}^{n-i}f_i \] 证明 ...

  6. Luogu3175 HAOI2015 按位或 min-max容斥、高维前缀和、期望

    传送门 套路题 看到\(n \leq 20\),又看到我们求的是最后出现的位置出现的时间的期望,也就是集合中最大值的期望,考虑min-max容斥. 由\(E(max(S)) = \sum\limits ...

  7. bzoj 4036 按位或 —— min-max容斥+FMT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4036 min-max容斥:https://blog.csdn.net/ez_2016gdgz ...

  8. kth min_max容斥

    题解: 普通的$min-max$容斥是用来求最后出现元素的期望之类的 $kth min-max$容斥进一步解决倒数第k个出现的元素的期望 给出公式: $kthmax(S)=\sum\limits_{T ...

  9. bzoj 4036 [HAOI2015]按位或——min-max容斥+FMT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4036 题解:https://www.cnblogs.com/Zinn/p/10260126. ...

随机推荐

  1. 在Windows使用VC编译ICU

    1 编译过程在Cygwin下进行,所以必须得安装Cygwin,并且加上Automake, autoconf, make, ar等选项 2 打开命令行窗口,设置环境变量,主要是可以启动cygwin的ba ...

  2. 【Demo】jQuery 表格内容动态排序

    实现功能: 通过点击表头某个字段,实现内容的升序或降序排序. 效果如下: 完整代码: <!DOCTYPE html> <html> <head> <meta ...

  3. bzoj1002: [FJOI2007]轮状病毒 生成树计数

    轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病毒的产生规 ...

  4. 什么情况下用resultType和 resultMap

    MyBatis中在查询进行select映射的时候,返回类型可以用resultType,也可以用resultMap 那什么情况下用resultType? resultMap 一般用在什么情况下?   如 ...

  5. 【收藏】SQL多行变一列

    CREATE TABLE DEPT (DeptNo INT IDENTITY(1, 1)NOT NULL ,  Country VARCHAR(50) ,  Location VARCHAR(50) ...

  6. Python抓取糗事百科成人版图片

    最近开始学习爬虫,一开始看的是静觅的爬虫系列文章,今天看到糗事百科成人版,心里就邪恶了一下,把图片都爬下来吧,哈哈~ 虽然后来实现了,但还是存在一些问题,暂且不提,先切入正题吧,没什么好说的,直接上代 ...

  7. JavaScript---js的模块化

    js的模块模式被定义为给类提供私有和公共封装的一种方法,也就是我们常说的“模块化”. 怎么实现“模块化”? 通过闭包的原理来实现“模块化”  ,具体实现:1.必须有外部的封闭函数,该函数必须至少被调用 ...

  8. SQL语句往Oracle数据库中插入日期型数据(to_date的用法)

    Oracle 在操作数据库上相比于其他的 T-sql 有微小的差别,但是在插入时间类型的数据是必须要注意他的 to_date 方法,具体的情况如下: --SQL语句往Oracle数据库中插入日期型数据 ...

  9. IIS站点/虚拟目录中访问共享目录(UNC)以及建立后的应用程序的信任级别问题

      UNC是 Universal Naming Convention 的简称,也叫通用命名规范.通用命名约定.网络(范指局域网)上资源的完整位置名称.格式为 \\servername\sharenam ...

  10. reactNative 的一些学习

    手把手视频 学习资料大全 入门系列