[HNOI 2008]GT考试
Description
问你长度为 \(n\) 的可含前导零的数字串中,不含长度为 \(m\) 的子串 \(X\) 有多少个,取模。
\(1\leq n\leq 10^9,1\leq m\leq 20\)
Solution
一个显然的 \(DP\) ,就是令 \(f_{i,j}\) 表示已经生成出的串长为 \(i\) 位,后 \(j\) 位与 \(X\) 串的前 \(j\) 位匹配的方案数。
那么 \(f_{i,j}=\sum_{x=1}^m f_{i-1,x}\cdot[x 可以转移到 j]\) 。
由于 \(n\) 过大,我们可以用矩阵加速。在构造矩阵时可以用 \(KMP\) 中的 \(next\) 数组的思想来简化计算过程,省去了暴力的计算。
Code
//It is made by Awson on 2018.3.14
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(LL x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(LL x) {if (x < 0) putchar('-'); print(Abs(x)); }
int n, m, k, nxt[25];
char ch[25];
struct mat {
int a[25][25];
mat() {memset(a, 0, sizeof(a)); }
mat operator * (const mat &b) const {
mat ans;
for (int i = 0; i <= m; i++)
for (int j = 0; j <= m; j++)
for (int p = 0; p <= m; p++)
ans.a[i][j] = (ans.a[i][j]+a[i][p]*b.a[p][j]%k)%k;
return ans;
}
}S, T;
void build() {
for (int i = 2; i <= m; i++) {
int j = nxt[i-1];
while (j && ch[j+1] != ch[i]) j = nxt[j];
if (ch[j+1] == ch[i]) nxt[i] = j+1;
}
for (int i = 1; i <= m; i++) {
for (char j = '0'; j <= '9'; j++) {
if (j == ch[i]) continue;
int p = nxt[i-1];
while (p && j != ch[p+1]) p = nxt[p];
if (j == ch[p+1]) ++p; ++T.a[i-1][p];
}
++T.a[i-1][i];
}
}
mat quick_pow(mat a, int b) {
mat ans = a; --b;
while (b) {
if (b&1) ans = ans*a;
b >>= 1, a = a*a;
}
return ans;
}
void work() {
read(n), read(m), read(k); scanf("%s", ch+1); build();
S.a[0][0] = 1; S = S*quick_pow(T, n); int ans = 0;
for (int i = 0; i < m; i++) ans += S.a[0][i]; writeln(ans%k);
}
int main() {
work(); return 0;
}
[HNOI 2008]GT考试的更多相关文章
- [补档][HNOI 2008]GT考试
[HNOI 2008]GT考试 题目 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2... ...
- BZOJ 1009 HNOI 2008 GT考试 递推+矩乘
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3679 Solved: 2254[Submit][Statu ...
- 【BZOJ 1005】【HNOI 2008】明明的烦恼
http://www.lydsy.com/JudgeOnline/problem.php?id=1005 答案是\[\frac{(n-2)!}{(n-2-sum)!×\prod_{i=1}^{cnt} ...
- 【BZOJ 1043】【HNOI 2008】下落的圆盘 判断圆相交+线段覆盖
计算几何真的好暴力啊. #include<cmath> #include<cstdio> #include<cstring> #include<algorit ...
- 【BZOJ 1007】【HNOI 2008】水平可见直线 解析几何
之前机房没网就做的这道题,用的解析几何判断交点横坐标 #include<cmath> #include<cstdio> #include<cstring> #inc ...
- [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...
- BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- HNOI 2008:水平可见直线
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...
- [HNOI 2008]越狱
Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果 相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱 I ...
随机推荐
- Mybatis学习笔记二
本篇内容,紧接上一篇内容Mybatis学习笔记一 输入映射和输出映射 传递简单类型和pojo类型上篇已介绍过,下面介绍一下包装类型. 传递pojo包装对象 开发中通过可以使用pojo传递查询条件.查询 ...
- Java基础学习笔记十二 类、抽象类、接口作为方法参数和返回值以及常用API
不同修饰符使用细节 常用来修饰类.方法.变量的修饰符 public 权限修饰符,公共访问, 类,方法,成员变量 protected 权限修饰符,受保护访问, 方法,成员变量 默认什么也不写 也是一种权 ...
- Spring Boot 2.0(六):使用 Docker 部署 Spring Boot 开源软件云收藏
云收藏项目已经开源2年多了,作为当初刚开始学习 Spring Boot 的练手项目,使用了很多当时很新的技术,现在看来其实很多新技术是没有必要使用的,但做为学习案例来讲确实是一个绝佳的 Spring ...
- MySQL之连接查询
主要是多表查询和连接查询
- 201621123060《JAVA程序设计》第一周学习总结
1.本周学习总结 1.讲述了JAVA的发展史,关于JDK.JRE.JVM的联系和区别 2.JDK是用JAVA开发工具.做项目的关键.JRE是JAVA的运行环境(JAVA也是JAVA语言开发的).JVM ...
- CNN中的padding
在使用TF搭建CNN的过程中,卷积的操作如下 convolution = tf.nn.conv2d(X, filters, strides=[1,2,2,1], padding="SAME& ...
- django + nginx + uwsgi + websocket
最近使用django框架做了一个简单的聊天机器人demo, 开发的过程中使用了django自带的websocket模块,当使用django框架自带的wsgi服务去启动的话,没有什么问题.如果要使用uw ...
- 双击CAD对象(具有扩展数据),显示自定义对话框实现方法
转自:Cad人生 链接:http://www.cnblogs.com/cadlife/p/3463337.html 题目:双击CAD对象,显示自定义对话框实现方法 内容粘贴如下: 主要是绑定两个事件: ...
- 更优雅的方式: JavaScript 中顺序执行异步函数
火于异步 1995年,当时最流行的浏览器--网景中开始运行 JavaScript (最初称为 LiveScript). 1996年,微软发布了 JScript 兼容 JavaScript.随着网景.微 ...
- Docker学习笔记 - Docker Compose 脚本命令
Docker Compose 配置文件包含 version.services.networks 三大部分,最关键的是 services 和 networks 两个部分, version: '2' se ...