题目描述

现在我们有一个长度为n的整数序列A。但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列。但是不希望改变过多的数,也不希望改变的幅度太大。

输入输出格式

输入格式:

第一行包含一个数n,接下来n个整数按顺序描述每一项的键值。

输出格式:

第一行一个整数表示最少需要改变多少个数。

第二行一个整数,表示在改变的数最少的情况下,每个数改变的绝对值之和的最小值。

输入输出样例

输入样例#1:
复制

4
5 2 3 5
输出样例#1: 复制

1
4

说明

【数据范围】

90%的数据n<=6000。

100%的数据n<=35000。

保证所有数列是随机的。

一份讲解的链接

先将数组每一位a[i]减i

这样单调上升就变成了不下降

在给第n+1位加一个正无穷的值(可以做所有子串的结尾,用于统计第2问的答案)

第一问:求最长不下降串长L

答案就是n-L

第二问:首先令f[i]表示1~i的最长不下降长度,g[i]为将1~i变为不下降的代价

对于一对(i,j)且f[i]=f[j]+1

设w(i,j)为将j+1~i变为单调不下降的最小代价

有一个结论:

找到一个断点k

j+1~k全部变成a[j],k+1~i全部变成a[i]

这样一定可以找到这个最小代价

证明见链接

这个复杂度很玄学,最坏O(n^3),但数据是随机的,所以远远达不到

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long lol;
struct Node
{
int next,to;
}edge[];
int L,n,head[],num,Min[],a[];
lol s1[],s2[],g[],f[];
void add(int u,int v)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
}
int find(int x)
{
int l=,r=L,as=;
while (l<=r)
{
int mid=(l+r)/;
if (Min[mid]<=x) as=mid,l=mid+;
else r=mid-;
}
return as;
}
int main()
{int i,j,k;
cin>>n;
for (i=;i<=n;i++)
{
scanf("%d",&a[i]);
a[i]-=i;
}
++n;
a[n]=(<<);
memset(Min,,sizeof(Min));
Min[]=-<<;L=;
for (i=;i<=n;i++)
{
int t=find(a[i]);
f[i]=t+;
L=max(L,t+);
Min[t+]=min(Min[t+],a[i]);
}
cout<<n-L<<endl;
for (i=n;i>=;i--)
{
add(f[i],i);
g[i]=1ll<<;
}
a[]=-<<;g[]=;
for (i=;i<=n;i++)
{
for (j=head[f[i]-];j;j=edge[j].next)
{
int v=edge[j].to;
if (v>i) break;
if (a[v]>a[i]) continue;
for (k=v;k<=i;k++)
s1[k]=abs(a[k]-a[v]),s2[k]=abs(a[k]-a[i]);
for (k=v+;k<=i;k++)
s1[k]+=s1[k-],s2[k]+=s2[k-];
for (k=v;k<i;k++)
g[i]=min(g[i],g[v]+s1[k]-s1[v]+s2[i]-s2[k]);
}
}
cout<<g[n];
}

[HAOI2006]数字序列的更多相关文章

  1. 【BZOJ1049】 [HAOI2006]数字序列

    BZOJ1049 [HAOI2006]数字序列 dp好题? 第一问 第一问我会做!令\(b_i=a_i-i\),求一个最长不下降子序列. \(n-ans\)就是最终的答案. 第二问 好难啊.不会.挖坑 ...

  2. 【BZOJ 1049】 1049: [HAOI2006]数字序列 (LIS+动态规划)

    1049: [HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变 ...

  3. 洛谷 P2501 [HAOI2006]数字序列 解题报告

    P2501 [HAOI2006]数字序列 题目描述 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大. ...

  4. bzoj 1049 [HAOI2006]数字序列

    [bzoj1049][HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不 ...

  5. 2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS)

    2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS) https://www.luogu.com.cn/problem/P2501 题意: 现在我们有一个长度为 n 的整 ...

  6. BZOJ1049 [HAOI2006]数字序列0

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  7. 【BZOJ】1049: [HAOI2006]数字序列(lis+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1049 题意:给一个长度为n的整数序列.把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希 ...

  8. 1049: [HAOI2006]数字序列 - BZOJ

    Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大.Input 第一行包含一个数n ...

  9. BZOJ1049:[HAOI2006]数字序列(DP)

    Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列. 但是不希望改变过多的数,也不希望改变的幅度太大. Input 第一行包含一个 ...

随机推荐

  1. 【福大软工】 W班级总成绩排名3

    评分链接: alpha测试    软件产品案例分析 总分排名: 团队千帆竞发图 总结: 本次排名是alpha测试    软件产品案例分析 两次排名的汇总. 1.alpha测试小组评价: 听说:10篇冲 ...

  2. 团队项目7——团队冲刺(beta版本)

    beta版本冲刺计划安排:http://www.cnblogs.com/ricardoCYF/p/8018413.html 12.06:http://www.cnblogs.com/ricardoCY ...

  3. 事后诸葛亮——城市安全风险管理项目Postmortem结果

    设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 本系统希望实现快速识别危害因素,使工作人员对风险作出准确的评估.即让使用者熟悉潜在的危险因素,知道 ...

  4. 201621123068 Week03-面向对象入门

    1. 本周学习总结 初学面向对象,会学习到很多碎片化的概念与知识.尝试学会使用思维导图将这些碎片化的概念.知识点组织起来.请使用工具画出本周学习到的知识点及知识点之间的联系.步骤如下: 1.1 写出你 ...

  5. hdu 4553 约会安排

    约会安排 http://acm.hdu.edu.cn/showproblem.php?pid=4553 Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  6. python 字符串和字典

    一.字符串操作 name = "my name is \t {name} and i am {year} years old" 1.首字母大写 print(name.capital ...

  7. Web Api 返回图片流

    public class TestController : ApiController { public HttpResponseMessage GetImg() { //获取文件的绝对路径 stri ...

  8. Linux实战案例(3)创建和删除用户

    建用户: adduser phpq                            //新建phpq用户passwd phpq                            //给php ...

  9. Linux:nohub启动后台永久进程

    nohup 命令运行由 Command参数和任何相关的 Arg参数指定的命令,忽略所有挂断(SIGHUP)信号.在注销后使用 nohup 命令运行后台中的程序.要运行后台中的 nohup 命令,添加 ...

  10. Hibernate(七):*.hbm.xml配置文件中Set三个属性

    背景: 在上一篇文章中实现双向关联时,其中在Customer.java中我们使用了java.util.List<Order>来关联多的Order.其实还有另外一种实现方法:使用java.u ...