题目描述

现在我们有一个长度为n的整数序列A。但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列。但是不希望改变过多的数,也不希望改变的幅度太大。

输入输出格式

输入格式:

第一行包含一个数n,接下来n个整数按顺序描述每一项的键值。

输出格式:

第一行一个整数表示最少需要改变多少个数。

第二行一个整数,表示在改变的数最少的情况下,每个数改变的绝对值之和的最小值。

输入输出样例

输入样例#1:
复制

4
5 2 3 5
输出样例#1: 复制

1
4

说明

【数据范围】

90%的数据n<=6000。

100%的数据n<=35000。

保证所有数列是随机的。

一份讲解的链接

先将数组每一位a[i]减i

这样单调上升就变成了不下降

在给第n+1位加一个正无穷的值(可以做所有子串的结尾,用于统计第2问的答案)

第一问:求最长不下降串长L

答案就是n-L

第二问:首先令f[i]表示1~i的最长不下降长度,g[i]为将1~i变为不下降的代价

对于一对(i,j)且f[i]=f[j]+1

设w(i,j)为将j+1~i变为单调不下降的最小代价

有一个结论:

找到一个断点k

j+1~k全部变成a[j],k+1~i全部变成a[i]

这样一定可以找到这个最小代价

证明见链接

这个复杂度很玄学,最坏O(n^3),但数据是随机的,所以远远达不到

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long lol;
struct Node
{
int next,to;
}edge[];
int L,n,head[],num,Min[],a[];
lol s1[],s2[],g[],f[];
void add(int u,int v)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
}
int find(int x)
{
int l=,r=L,as=;
while (l<=r)
{
int mid=(l+r)/;
if (Min[mid]<=x) as=mid,l=mid+;
else r=mid-;
}
return as;
}
int main()
{int i,j,k;
cin>>n;
for (i=;i<=n;i++)
{
scanf("%d",&a[i]);
a[i]-=i;
}
++n;
a[n]=(<<);
memset(Min,,sizeof(Min));
Min[]=-<<;L=;
for (i=;i<=n;i++)
{
int t=find(a[i]);
f[i]=t+;
L=max(L,t+);
Min[t+]=min(Min[t+],a[i]);
}
cout<<n-L<<endl;
for (i=n;i>=;i--)
{
add(f[i],i);
g[i]=1ll<<;
}
a[]=-<<;g[]=;
for (i=;i<=n;i++)
{
for (j=head[f[i]-];j;j=edge[j].next)
{
int v=edge[j].to;
if (v>i) break;
if (a[v]>a[i]) continue;
for (k=v;k<=i;k++)
s1[k]=abs(a[k]-a[v]),s2[k]=abs(a[k]-a[i]);
for (k=v+;k<=i;k++)
s1[k]+=s1[k-],s2[k]+=s2[k-];
for (k=v;k<i;k++)
g[i]=min(g[i],g[v]+s1[k]-s1[v]+s2[i]-s2[k]);
}
}
cout<<g[n];
}

[HAOI2006]数字序列的更多相关文章

  1. 【BZOJ1049】 [HAOI2006]数字序列

    BZOJ1049 [HAOI2006]数字序列 dp好题? 第一问 第一问我会做!令\(b_i=a_i-i\),求一个最长不下降子序列. \(n-ans\)就是最终的答案. 第二问 好难啊.不会.挖坑 ...

  2. 【BZOJ 1049】 1049: [HAOI2006]数字序列 (LIS+动态规划)

    1049: [HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变 ...

  3. 洛谷 P2501 [HAOI2006]数字序列 解题报告

    P2501 [HAOI2006]数字序列 题目描述 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大. ...

  4. bzoj 1049 [HAOI2006]数字序列

    [bzoj1049][HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不 ...

  5. 2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS)

    2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS) https://www.luogu.com.cn/problem/P2501 题意: 现在我们有一个长度为 n 的整 ...

  6. BZOJ1049 [HAOI2006]数字序列0

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  7. 【BZOJ】1049: [HAOI2006]数字序列(lis+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1049 题意:给一个长度为n的整数序列.把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希 ...

  8. 1049: [HAOI2006]数字序列 - BZOJ

    Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大.Input 第一行包含一个数n ...

  9. BZOJ1049:[HAOI2006]数字序列(DP)

    Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列. 但是不希望改变过多的数,也不希望改变的幅度太大. Input 第一行包含一个 ...

随机推荐

  1. 第二次作业--------STEAM

    --------------------------------------第一部分 产品介绍----------------------------------------------------- ...

  2. Java作业-集合

    1. 本周学习总结 2. 书面作业 1. ArrayList代码分析 1.1 解释ArrayList的contains源代码 public boolean contains(Object o) { r ...

  3. Linux下进程间通信的六种机制详解

    linux下进程间通信的几种主要手段:        1.管道(Pipe)及有名管道(named pipe):管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具 ...

  4. Twisted 安全信道

    1.安装python的SSL插件pyOpenSSL pip install pyopenssl 2.安装OpenSSL工具包 sudo apt-get install openssl sudo apt ...

  5. http post/get 2种使用方式

     public class HttpUtil { //HttpPost public static String executePost(String url, List<NameValue ...

  6. LR录制脚本的时候打不开浏览器问题

    使用Chrome时,显示开始录制但是Action中无任何脚本,即脚本没成功生成. 使用Firefox(最新版),一直关闭程序,详细信息有StackHash_0a9e. 使用IE11时,也是显示开始录制 ...

  7. LeetCode & Q35-Search Insert Position-Easy

    Array Binary Search Description: Given a sorted array and a target value, return the index if the ta ...

  8. Linux CentOS7.0 (03)安装验证 docker

    一.安装docker 1.升级 Linux 的软件包和内核 sudo yum update 2.安装 docker (1) sudo yum install docker  (2).验证docker安 ...

  9. 新概念英语(1-53)An interesting climate

    新概念英语(1-53)An interesting  climate What's the favourite subject of conversation in England? A:Where ...

  10. MySql入门(2-2)创建数据库

    mysql -u root -p; show databases; create database apigateway; use apigateway; show tables;