BZOJ_1391_[Ceoi2008]order_最大权闭合子图

Description

有N个工作,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完成。 现在给出这些参数,求最大利润

Input

第一行给出 N,M(1<=N<=1200,1<=M<=1200) 下面将有N块数据,每块数据第一行给出完成这个任务能赚到的钱(其在[1,5000])及有多少道工序 接下来若干行每行两个数,分别描述完成工序所需要的机器编号及租用它的费用(其在[1,20000]) 最后M行,每行给出购买机器的费用(其在[1,20000])

Output

最大利润

Sample Input

2 3
100 2
1 30
2 20
100 2
1 40
3 80
50
80
110

Sample Output

50

 权值有正有负,很容易想到最大权闭合子图。
S连工序-利润代表割这个就不选这个任务
任务连机器-租的费用代表这个付出租的代价
机器连T-购买的费用代表付出购买的费用。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 2500
#define M 3600050
#define S (n+m+1)
#define T (n+m+2)
#define inf 100000000
int head[N],to[M],nxt[M],flow[M],cnt=1,dep[N],Q[N],l,r,sum,n,m,cur[N];
inline void add(int u,int v,int f) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; flow[cnt]=f;
to[++cnt]=u; nxt[cnt]=head[v]; head[v]=cnt; flow[cnt]=0;
}
bool bfs() {
int i;
memset(dep,0,sizeof(dep)); l=r=0;
Q[r++]=S; dep[S]=1;
while(l<r) {
int x=Q[l++];
for(i=head[x];i;i=nxt[i]) {
if(!dep[to[i]]&&flow[i]) {
dep[to[i]]=dep[x]+1;
if(to[i]==T) return 1;
Q[r++]=to[i];
}
}
}
return 0;
}
int dfs(int x,int mf) {
if(x==T) return mf;
int nf=0,i;
for(i=cur[x];i;i=nxt[i]) {
if(dep[to[i]]==dep[x]+1&&flow[i]) {
int tmp=dfs(to[i],min(mf-nf,flow[i]));
if(!tmp) dep[to[i]]=0;
nf+=tmp;
flow[i]-=tmp;
if(flow[i]) cur[x]=i;
flow[i^1]+=tmp;
if(nf==mf) break;
}
}
return nf;
}
void dinic() {
int ans=sum,f,i;
while(bfs()) {
for(i=1;i<=T;i++) cur[i]=head[i];
while(f=dfs(S,inf)) ans-=f;
}
printf("%d\n",ans);
}
int main() {
scanf("%d%d",&n,&m);
int i,x,y,z,w;
for(i=1;i<=n;i++) {
scanf("%d%d",&x,&y);
add(S,i,x);
sum+=x;
while(y--) {
scanf("%d%d",&z,&w);
add(i,z+n,w);
}
}
for(i=1;i<=m;i++) {
scanf("%d",&x);
add(i+n,T,x);
}
dinic();
}

BZOJ_1391_[Ceoi2008]order_最大权闭合子图的更多相关文章

  1. P4177 [CEOI2008]order(网络流)最大权闭合子图

    P4177 [CEOI2008]order 如果不能租机器,这就是最大权闭合子图的题: 给定每个点的$val$,并给出限制条件:如果取点$x$,那么必须取$y_1,y_2,y_3......$,满足$ ...

  2. P4177 [CEOI2008]order 网络流,最小割,最大权闭合子图

    题目链接 \(Click\) \(Here\) 如果没有租用机器就是一个裸的最大权闭合子图.现在有了租用机器应该怎么办呢? 单独拆点是不行的,因为会和直接买下的情况脱离关系,租借是和连边直接相关的,那 ...

  3. BZOJ1391/LG4177 「CEOI2008」order 最大权闭合子图

    问题描述 BZOJ1391 LG4177 题解 最大权闭合子图,本质是最小割 在任务和机器中间的边之前权值设为INF,代表不可违背这条规则 本题的租借就相当于允许付出一定代价,违背某个规则,只需要把中 ...

  4. BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...

  5. HDU 3879 Base Station(最大权闭合子图)

    经典例题,好像说可以转化成maxflow(n,n+m),暂时只可以勉强理解maxflow(n+m,n+m)的做法. 题意:输入n个点,m条边的无向图.点权为负,边权为正,点权为代价,边权为获益,输出最 ...

  6. [BZOJ 1497][NOI 2006]最大获利(最大权闭合子图)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1497 分析: 这是在有向图中的问题,且边依赖于点,有向图中存在点.边之间的依赖关系可以 ...

  7. HDU4971 A simple brute force problem.(强连通分量缩点 + 最大权闭合子图)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=4971 Description There's a company with several ...

  8. HDU5855 Less Time, More profit(最大权闭合子图)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5855 Description The city planners plan to build ...

  9. HDU5772 String problem(最大权闭合子图)

    题目..说了很多东西 官方题解是这么说的: 首先将点分为3类 第一类:Pij 表示第i个点和第j个点组合的点,那么Pij的权值等于w[i][j]+w[j][i](表示得分) 第二类:原串中的n个点每个 ...

随机推荐

  1. Spring Cloud入门教程-Hystrix断路器实现容错和降级

    简介 Spring cloud提供了Hystrix容错库用以在服务不可用时,对配置了断路器的方法实行降级策略,临时调用备用方法.这篇文章将创建一个产品微服务,注册到eureka服务注册中心,然后我们使 ...

  2. partition List(划分链表)

    Given a linked list and a value x, partition it such that all nodes less than x come before nodes gr ...

  3. DBC的故事

    1.DBC定义 DBC(data base CAN)是汽车ECU间进行CAN通讯的报文内容,有了它相互之间才能听懂. 2.DBC查看 DBC是文本文件,可以用记事本打开,一般都用CANdb++,可以更 ...

  4. IDEA: 遇到问题Error during artifact deployment. See server log for details解决方法

    1.检查tomcat是否配置正确. 2.检查配置文件是否配置正确,web.xml.等. 3. 4.

  5. linux安装VLAN,系统怎么划分VLAN打标签上交换机

    前几天公司一台物理机需要连接公网,但是公网需要网卡打标签上去. 由于没有做过linux主机划分VLAN的操作,因此去查了一下,需要利用vconfig这个命令. 但是纠结的是,系统源中没有这个包.(很坑 ...

  6. 【转】火星坐标系 (GCJ-02) 与百度坐标系 (BD-09) 的转换算法

    关于 GCJ-02 和 BD-09 ,请参考 http://developer.baidu.com/map/question.htm#qa0043 . 算法代码如下,其中 bd_encrypt 将 G ...

  7. nginx for Windows

    zt from nginx official site. Known issuesPossible future enhancements Version of nginx for Windows u ...

  8. 我的AngularJS学习轨迹

    开始接触Anguljar可能是在2013年初,那个时候的版本1.0.*,那个时候国内主要的中文资料AngularJS学习笔记:http://zouyesheng.com/angular.html,an ...

  9. Android面试题摘录

    本文中面试题全部选自<精通Android>(英文名“Pro android 4”)一书的章后面试题,不过这套面试题与书中内容结合比较紧密,所以选择使用时请谨慎. ####C2:Androi ...

  10. java之web开发过滤器

    我们通常上网的时候都会遇到一个问题,看到一个视频之类的,想要点开观看,点击之后,网页 提醒你:您尚未登录,是否要登录?然后巴拉巴拉跑去输账号密码. 那么这就是一个过滤器的功能,当你要访问一个资源的时候 ...