MapReduce工作原理图文详解

前言:
 
前段时间我们云计算团队一起学习了hadoop相关的知识,大家都积极地做了、学了很多东西,收获颇丰。可是开学后,大家都忙各自的事情,云计算方面的动静都不太大。呵呵~不过最近在胡老大的号召下,我们云计算团队重振旗鼓了,希望大伙仍高举“云在手,跟我走”的口号战斗下去。这篇博文就算是我们团队“重启云计算”的见证吧,也希望有更多优秀的文章出炉。汤帅,亮仔,谢总•••搞起来啊!
 
呵呵,下面我们进入正题,这篇文章主要分析以下两点内容:
目录:
1.MapReduce作业运行流程
2.Map、Reduce任务中Shuffle和排序的过程
 
正文:
 
1.MapReduce作业运行流程
 
下面贴出我用visio2010画出的流程示意图:
 
 
 
流程分析:
 
1.在客户端启动一个作业。
 
2.向JobTracker请求一个Job ID。
 
3.将运行作业所需要的资源文件复制到HDFS上,包括MapReduce程序打包的JAR文件、配置文件和客户端计算所得的输入划分信息。这些文件都存放在JobTracker专门为该作业创建的文件夹中。文件夹名为该作业的Job ID。JAR文件默认会有10个副本(mapred.submit.replication属性控制);输入划分信息告诉了JobTracker应该为这个作业启动多少个map任务等信息。
 
4.JobTracker接收到作业后,将其放在一个作业队列里,等待作业调度器对其进行调度(这里是不是很像微机中的进程调度呢,呵呵),当作业调度器根据自己的调度算法调度到该作业时,会根据输入划分信息为每个划分创建一个map任务,并将map任务分配给TaskTracker执行。对于map和reduce任务,TaskTracker根据主机核的数量和内存的大小有固定数量的map槽和reduce槽。这里需要强调的是:map任务不是随随便便地分配给某个TaskTracker的,这里有个概念叫:数据本地化(Data-Local)。意思是:将map任务分配给含有该map处理的数据块的TaskTracker上,同时将程序JAR包复制到该TaskTracker上来运行,这叫“运算移动,数据不移动”。而分配reduce任务时并不考虑数据本地化。
 
5.TaskTracker每隔一段时间会给JobTracker发送一个心跳,告诉JobTracker它依然在运行,同时心跳中还携带着很多的信息,比如当前map任务完成的进度等信息。当JobTracker收到作业的最后一个任务完成信息时,便把该作业设置成“成功”。当JobClient查询状态时,它将得知任务已完成,便显示一条消息给用户。
 
以上是在客户端、JobTracker、TaskTracker的层次来分析MapReduce的工作原理的,下面我们再细致一点,从map任务和reduce任务的层次来分析分析吧。
 
2.Map、Reduce任务中Shuffle和排序的过程
 
同样贴出我在visio中画出的流程示意图:
 
流程分析:
 
Map端:
 
1.每个输入分片会让一个map任务来处理,默认情况下,以HDFS的一个块的大小(默认为64M)为一个分片,当然我们也可以设置块的大小。map输出的结果会暂且放在一个环形内存缓冲区中(该缓冲区的大小默认为100M,由io.sort.mb属性控制),当该缓冲区快要溢出时(默认为缓冲区大小的80%,由io.sort.spill.percent属性控制),会在本地文件系统中创建一个溢出文件,将该缓冲区中的数据写入这个文件。
 
2.在写入磁盘之前,线程首先根据reduce任务的数目将数据划分为相同数目的分区,也就是一个reduce任务对应一个分区的数据。这样做是为了避免有些reduce任务分配到大量数据,而有些reduce任务却分到很少数据,甚至没有分到数据的尴尬局面。其实分区就是对数据进行hash的过程。然后对每个分区中的数据进行排序,如果此时设置了Combiner,将排序后的结果进行Combia操作,这样做的目的是让尽可能少的数据写入到磁盘。
 
3.当map任务输出最后一个记录时,可能会有很多的溢出文件,这时需要将这些文件合并。合并的过程中会不断地进行排序和combia操作,目的有两个:1.尽量减少每次写入磁盘的数据量;2.尽量减少下一复制阶段网络传输的数据量。最后合并成了一个已分区且已排序的文件。为了减少网络传输的数据量,这里可以将数据压缩,只要将mapred.compress.map.out设置为true就可以了。
 
4.将分区中的数据拷贝给相对应的reduce任务。有人可能会问:分区中的数据怎么知道它对应的reduce是哪个呢?其实map任务一直和其父TaskTracker保持联系,而TaskTracker又一直和JobTracker保持心跳。所以JobTracker中保存了整个集群中的宏观信息。只要reduce任务向JobTracker获取对应的map输出位置就ok了哦。
 
到这里,map端就分析完了。那到底什么是Shuffle呢?Shuffle的中文意思是“洗牌”,如果我们这样看:一个map产生的数据,结果通过hash过程分区却分配给了不同的reduce任务,是不是一个对数据洗牌的过程呢?呵呵。
 
Reduce端:
 
1.Reduce会接收到不同map任务传来的数据,并且每个map传来的数据都是有序的。如果reduce端接受的数据量相当小,则直接存储在内存中(缓冲区大小由mapred.job.shuffle.input.buffer.percent属性控制,表示用作此用途的堆空间的百分比),如果数据量超过了该缓冲区大小的一定比例(由mapred.job.shuffle.merge.percent决定),则对数据合并后溢写到磁盘中。
 
2.随着溢写文件的增多,后台线程会将它们合并成一个更大的有序的文件,这样做是为了给后面的合并节省时间。其实不管在map端还是reduce端,MapReduce都是反复地执行排序,合并操作,现在终于明白了有些人为什么会说:排序是hadoop的灵魂。
 
3.合并的过程中会产生许多的中间文件(写入磁盘了),但MapReduce会让写入磁盘的数据尽可能地少,并且最后一次合并的结果并没有写入磁盘,而是直接输入到reduce函数。

hadoop原理的更多相关文章

  1. Hadoop 原理总结

    Hadoop 原理总结   一.Hadoop技术原理 Hdfs主要模块:NameNode.DataNode Yarn主要模块:ResourceManager.NodeManager 常用命令: 1)用 ...

  2. Hadoop介绍-2.分布式计算框架Hadoop原理及架构全解

    Hadoop是Apache软件基金会所开发的并行计算框架与分布式文件系统.最核心的模块包括Hadoop Common.HDFS与MapReduce. HDFS HDFS是Hadoop分布式文件系统(H ...

  3. Eclipse上Hadoop插件中Run On Hadoop原理[转]

    通过Eclipse的hadoop插件中的"run on hadoop"命令的原理:它不是把jar包发送到hadoop集群上去运行,而只是使用了hadoop集群上的hdfs,从hdf ...

  4. Hadoop原理之——HDFS原理

    Hadoop 3个核心组件: 分布式文件系统:Hdfs——实现将文件分布式存储在很多的服务器上(hdfs是一个基于Linux本地文件系统上的文件系统) 分布式运算编程框架:Mapreduce——实现在 ...

  5. Hadoop原理介绍

    Hadoop核心之HDFS 架构设计   老嗨 2015-09-18 16:55:00 浏览225 评论0 摘要: 概述:HDFS即Hadoop Distributed File System分布式文 ...

  6. hadoop 原理: 浅析Hadoop文件格式

    Hadoop 作为MR 的开源实现,一直以动态运行解析文件格式并获得比MPP数据库快上几倍的装载速度为优势.不过,MPP数据库社区也一直批评Hadoop由于文件格式并非 为特定目的而建,因此序列化和反 ...

  7. [Hadoop]Hadoop章1 Hadoop原理解析

    Hadoop是Apache软件基金会所开发的并行计算框架与分布式文件系统.最核心的模块包括Hadoop Common.HDFS与MapReduce. HDFS HDFS是Hadoop分布式文件系统(H ...

  8. 大数据组件原理总结-Hadoop、Hbase、Kafka、Zookeeper、Spark

    Hadoop原理 分为HDFS与Yarn两个部分.HDFS有Namenode和Datanode两个部分.每个节点占用一个电脑.Datanode定时向Namenode发送心跳包,心跳包中包含Datano ...

  9. Hadoop、Pig、Hive、Storm、NOSQL 学习资源收集

    (一)hadoop 相关安装部署 1.hadoop在windows cygwin下的部署: http://lib.open-open.com/view/1333428291655 http://blo ...

随机推荐

  1. NodeJS 远程连接windows 上的MongoDB

    ---恢复内容开始--- 在购买了腾讯云主机,部署了nodejs项目之后,发现没有mongo数据库,于是在官网上下载了最新版的mongo数据库.然后就有了下边的一系列问题. 1.先说说基础配置吧. 1 ...

  2. thinkphp3.2-更改控制器名后找不到相应的表?报1146的错

    用tp在做着自己的小系统的时候,明明在刚才还是能好好地查到表的,在Service用了'D'方法连自己数据库的表,只是更改了自己的控制器名,却报错了... 我就纳闷了,虽然我的控制器和Service用的 ...

  3. 解决 python 中,时间日期不能序列化的问题

    在python 中, 你在数据库娶到了数据中如果含有时间日期,那么你在向前端作为json对象传递的时候呢,就会报错.大致如下: TypeError: datetime.datetime(2017, 1 ...

  4. const 相关知识 const和指针、const和引用

    以前老是对const概念不清不楚,今天算是好好做个笔记总结一下.以下内容包括1)常量指针(指针本身是常量),2)指针常量(指针指向的是常量对象),3)常量引用,4)const成员函数. 常量指针,指针 ...

  5. Mycat 配置说明(server.xml)

    server.xml 几乎保存了所有mycat需要的系统配置信息,包括 mycat 用户管理.DML权限管理等,其在代码内直接的映射类为SystemConfig 类. user 标签 该标签主要用于定 ...

  6. JDK1.8源码(四)——java.util.Arrays 类

    java.util.Arrays 类是 JDK 提供的一个工具类,用来处理数组的各种方法,而且每个方法基本上都是静态方法,能直接通过类名Arrays调用. 1.asList public static ...

  7. python-正铉

    第一步:安装插件 pip install Numpypip install matploatlib 第二步 导入包 import numpy as np import matplotlib.pylot ...

  8. 彻底弄懂CommonJS和AMD/CMD!

    JS中的模块规范(CommonJS,AMD,CMD),如果你听过js模块化这个东西,那么你就应该听过或CommonJS或AMD甚至是CMD这些规范咯,我也听过,但之前也真的是听听而已. 现在就看看吧, ...

  9. Nginx代理转发Apache+svn

    1.安装svn和httpd yum install httpd yum install subversion mod_dav_svn 创建仓库目录 mkdir -p /var/www/svn 3.创建 ...

  10. 计时器setInterval()-慕课网

    计时器setInterval() 在执行时,从载入页面后每隔指定的时间执行代码. 语法: setInterval(代码,交互时间); 参数说明: 1. 代码:要调用的函数或要执行的代码串. 2. 交互 ...