University of Toronto Faculty of Arts and Science MAT344– Final Assessment Combinatorics Instructors: Stanislav Balchev and Max Klambauer 19 August 2020
随便找的一份测试题
总共9题,这里选择性地做一下。
时间仓促,没有核对答案。
T7

\]
T9

先做EGF
\]
\]
再反演回去
\]
其中
\left\{
\begin{array}{**lr**}
2, \ \ for\ n=0 \\
-4 ,\ \ for \ n=1 \\
5^{n-2}[49n(n-1)-70n+50] ,\ for\ n\geq 2
\end{array}
\right.
\]
T6


T5

solution to (a)
EGF板子题
(...+\frac{x^6}{6!}+\frac{x^4}{4!}+\frac{x^2}{2!}+1)^2\cdot(...+\frac{x^7}{7!}+\frac{x^5}{5!}+\frac{x^3}{3!}+x)^2\\
=(\frac{e^x+e^{-x}}{2})^2(\frac{e^x-e^{-x}}{2})^2\\
=\frac{e^{4 x}}{16}+\frac{1}{16} e^{-4 x}-\frac{1}{8}
\end{aligned}
\]
反演回去
\]
solution to (b)
这时候就要用到博大精深的汉语了
12人5工程,每个工程至少1人,每人最多1工程。
\]
solution to (c)
30个不同球放5个不同帽子。每个帽子至少1个球,但是1个帽子里不能装所有球。
水题。
$ 5!\cdot S_2(30,5)-5$
\(S_2(n,m)\)是第二类斯特林数,把\([n]\)分为\(m\)个非空子集的划分个数
solution to (d)
n=15的错排是吗?没理解错的话
人生活苦短,记不住显式的公式\(f(n)=n!(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-...(-1)^n\frac{1}{n!})\)还是递推吧
\]
\]
递推式的证明:
考虑排列的圆分解,错排(derangement)是说长度为1的cycle的个数为0。
考虑最后一个元素\(n\),如果它所在的cycle长度\(\geq 3\),这相当于把\(n\)插入到(n-1)-错排排列的圆分解的\((n-1)\)个间隙之一,这有\((n-1)f(n-1)\)种,贡献了第一项
如果它所在的cycle长度为2,相当于从[n-1]中选出一个与\(n\)构成【互相置换】,剩下的n-2个构成错排,这有\((n-1)f(n-2)\)种,贡献了第二项
T1
Give a formula for the number of lattice paths from (0,0) to (3n,n) where there are no instances of a vertical step being followed by another vertical step.
dp呗
\(dp[i][j][0]\)表示是1个horizonal step来到(i,j)的方法数
\(dp[i][j][1]\)表示是1个vertical step来到(i,j)的方法数
dp[i][j][1]=dp[i][j-1][0]\\
ans[i][j]=dp[i][j][0]+dp[i][j][1]
\]
边界条件
dp[i][0][1]=0 \\
for \ i\geq1 \\
dp[0][1][0]=0 \\
dp[0][1][1]=1 \\
\\and\\
dp[0][j][0]=0 \\
dp[0][j][1]=0 \\
for \ j\geq1
\]
嗯这个肯定有简单的方法,但我暂时没想到
T2
给你一个图,问你它是不是平面图或者是不是和平面图同构?给出理由

直接上库拉托夫斯基定理Kuratowski's Theorem
一个图是平面的当且仅当它不包含同胚于\(K_5\)或\(K_{3,3}\)的子图
A graph is planar if and only if it contains no subdivision of either \(K_5\) or \(K_{3,3}\)

我找了半天,你可以看到一个同胚于\(K_5\)的子图,所以图\(G\)不是平面图
用那个Euler不等式
\(e>3v-6\),则图\(G\)非平面图
\(19<24\) 没作用
T3
图形的色数是产生图形正确着色所需的最小颜色数。(点染色)

首先团数clique number(能找到的最大\(i\),存在子图是完全图\(K_i\))是3,那么色数至少是3
提示已经给到位了,我们把字符串看成十进制数,然后按照%3的余数进行染3种色:比如mod3为0染0号色;mod3为1染1号色;mod3为2染2号色
考虑颜色相同的两个不同的点,它们肯定不相邻,因为相邻的点mod3一定不等。
这说明我们找到了3种颜色点染色的方案。
所以,图\(G\)的色数是3
T4

手解Ford-Fulkerson algorithm
算了这算法我没弄明白过
吐个槽,我差点和那个求最短路的Bellman Ford algorithm弄混了
但是这题给的例子太弱了,甚至可以直接看出来
可以先把比边权都除以5,方便计算
最后的最大流是20,一种方案是

T8

没看懂
University of Toronto Faculty of Arts and Science MAT344– Final Assessment Combinatorics Instructors: Stanislav Balchev and Max Klambauer 19 August 2020的更多相关文章
- 办理多伦多大学(本科)学历认证『微信171922772』Toronto学位证成绩单使馆认证University of Toronto
办理多伦多大学(本科)学历认证『微信171922772』Toronto学位证成绩单使馆认证University of Toronto Q.微信:171922772办理教育部国外学历学位认证海外大学毕业 ...
- university, school, college, department, institute的区别
这些个词没有太大区别,有时候有些词是可以通用的,而有些用法则是随着地域时间的不同而变迁. 一般说来,college译作“学院”,它是university (综合性大学)的一个组成部分,例如,一所综合大 ...
- 2017年Nature文章“Millions of online book co-purchases reveal partisan differences in the consumption of science”阅读笔记
论文: Millions of online book co-purchases reveal partisan differences in the consumption of scie ...
- 院校-美国:哈佛大学(Harvard University)
ylbtech-院校-美国:哈佛大学(Harvard University) 哈佛大学(Harvard University),简称“哈佛”,坐落于美国马萨诸塞州波士顿都市区剑桥市,是一所享誉世界的私 ...
- PhD Positions opening at University of Nevada, Reno (Wireless Networking / Cognitive Radio / Wireless Security)
PhD Positions opening at University of Nevada, RenoDept. of Computer Science and Engineering Researc ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
- Neuroaesthetics神经美学
欢迎您到脑科学的世界! 神经美学(或neuroaesthetics)是一个相对较新的经验主义美学的子学科.经验主义美学需要科学的方法来研究艺术和音乐的审美观念. neuroesthetics于2002 ...
- paper 13:计算机视觉研究群体及专家主页汇总
做机器视觉和图像处理方面的研究工作,最重要的两个问题:其一是要把握住国际上最前沿的内容:其二是所作工作要具备很高的实用背景.解决第一个问题 的办法就是找出这个方向公认最高成就的几个超级专家(看看他们都 ...
- CV code references
转:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction: SIFT [1] [Demo program][SI ...
- ACM会议列表与介绍(2014/05/06)
Conferences ACM SEACM Southeast Regional Conference ACM Southeast Regional Conference the oldest, co ...
随机推荐
- js apply 与 call
简介 用来调用方法,第一个参数替换掉用方法的this对象 区别:call:A.fn.call(B, arg1,arg2,argn...),后面的参数用逗号分隔 apply:A.fn.apply(B, ...
- Kubernetes--案例:使用Ingress发布tomcat
假设有这样一套环境: Kubernetes集群上的tomcat-deploy控制器生成了两个运行于Pod资源中的tomcat实例,tomcat-svc是将它们统一暴露于集群中的访问入口.现在需要通过I ...
- ubuntu ssh远程访问出现Permission denied(publickey,password)解决方法
windows上安装SSH服务设置–>应用–>可选功能–>添加功能–>安装 OpenSSH服务器 和 OpenSSH客户端在左下角搜索栏输入服务,将相关SSH服务设置为自动(延 ...
- 27 python 发送短信
腾讯云短信服务,来进行发送短信. 注册账号 开通服务 + 缴费 (实名.企业认证,公众号) API服务.SDK服务 API,接口 import requests # 在此之前还会处理签名和加密的工作量 ...
- HidController控件下载安装
用Delphi 或 C++ 开发 USB 接口时要用到的 HidController控件,如果你找不到去哪下载参考这里. 下载地址:https://sourceforge.net/projects/j ...
- 1、Java程序概述
1.什么是Java? Java是一个完整的平台,有一个庞大的库,其中包含了很多可重用的代码,以及一个提供诸如安全性.跨操作系统的可移植性以及自动垃圾收集等服务的执行环境. 2.Java白皮书的关键术语 ...
- 面向对象ooDay7
.精华笔记: 1)成员内部类: 应用率不高 1.1)类中套类,外面的称为外部类,里面的称为内部类 1.2)内部类通常只服务于外部类,对外不具备可见性 1.3)内部类对象通常在外部类中创建 1.4)内部 ...
- elasticsearch的Kibana基本操作
幂等(idempotent.idempotence)是一个数学与计算机学概念,常见于抽象代数中. 在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同.幂等函数,或幂等方法,是 ...
- CF 1020B Badge
之前写过DFS的题,但是或多或少有参考别人的思路,最近开始专攻DFS,下面这道题就是DFS练习第一题CF 1020B,之后训练完后抽时间写一篇DFS专项. B. Badge time limit ...
- 解决IDEA输出中文乱码问题
问题描述(中国人加油,真痛苦) 无法正确输出中文字符:(请正确分辨自己是哪一种乱码问题!) 解决方法 1.最容易想到 File -> Settings -> File Encodings下 ...