Codeforces Round #315 (Div. 2) C. Primes or Palindromes? 暴力
3 seconds
256 megabytes
standard input
standard output
Rikhail Mubinchik believes that the current definition of prime numbers is obsolete as they are too complex and unpredictable. A palindromic number is another matter. It is aesthetically pleasing, and it has a number of remarkable properties. Help Rikhail to convince the scientific community in this!
Let us remind you that a number is called prime if it is integer larger than one, and is not divisible by any positive integer other than itself and one.
Rikhail calls a number a palindromic if it is integer, positive, and its decimal representation without leading zeros is a palindrome, i.e. reads the same from left to right and right to left.
One problem with prime numbers is that there are too many of them. Let's introduce the following notation: π(n) — the number of primes no larger than n, rub(n) — the number of palindromic numbers no larger than n. Rikhail wants to prove that there are a lot more primes than palindromic ones.
He asked you to solve the following problem: for a given value of the coefficient A find the maximum n, such that π(n) ≤ A·rub(n).
The input consists of two positive integers p, q, the numerator and denominator of the fraction that is the value of A (
,
).
If such maximum number exists, then print it. Otherwise, print "Palindromic tree is better than splay tree" (without the quotes).
1 1
40
1 42
1
6 4
172
题意:不大于n的素数的个数<=A*不大于n的回文数的个数;求最大的n
思路:暴力;
#include<bits/stdc++.h>
using namespace std;
int a[];
int check(int x)
{
int ji=;
while(x)
{
a[ji++]=x%;
x/=;
}
for(int i=;i<ji/;i++)
{
if(a[i]!=a[ji--i])
return ;
}
return ;
}
int prime(int n)
{
if(n<=)
return ;
if(n==)
return ;
if(n%==)
return ;
int k, upperBound=n/;
for(k=; k<=upperBound; k+=)
{
upperBound=n/k;
if(n%k==)
return ;
}
return ;
}
#define ll __int64
const int N=2e6+;
ll p[N],h[N];
int main()
{
for(ll i=;i<=;i++)
{
p[i]=p[i-];
h[i]=h[i-];
if(prime(i))
p[i]++;
if(check(i))
h[i]++;
}
ll u,v;
scanf("%I64d%I64d",&u,&v);
for(int i=;i>;i--)
if(v*p[i]<=u*h[i])
{
printf("%d\n",i);
return ;
}
printf("Palindromic tree is better than splay tree\n");
return ;
}
Codeforces Round #315 (Div. 2) C. Primes or Palindromes? 暴力的更多相关文章
- Codeforces Round #315 (Div. 1) A. Primes or Palindromes? 暴力
A. Primes or Palindromes?Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3261 ...
- Codeforces Round #315 (Div. 2C) 568A Primes or Palindromes? 素数打表+暴力
题目:Click here 题意:π(n)表示不大于n的素数个数,rub(n)表示不大于n的回文数个数,求最大n,满足π(n) ≤ A·rub(n).A=p/q; 分析:由于这个题A是给定范围的,所以 ...
- Codeforces Round #315 (Div. 2)——C. Primes or Palindromes?
这道题居然是一个大暴力... 题意: π(n):小于等于n的数中素数的个数 rub(n) :小于等于n的数中属于回文数的个数 然后给你两个数p,q,当中A=p/q. 然后要你找到对于给定的A.找到使得 ...
- Codeforces Round #297 (Div. 2)D. Arthur and Walls 暴力搜索
Codeforces Round #297 (Div. 2)D. Arthur and Walls Time Limit: 2 Sec Memory Limit: 512 MBSubmit: xxx ...
- Codeforces Round #315 (Div. 2) (ABCD题解)
比赛链接:http://codeforces.com/contest/569 A. Music time limit per test:2 seconds memory limit per test: ...
- codeforces 568a//Primes or Palindromes?// Codeforces Round #315 (Div. 1)
题意:求使pi(n)*q<=rub(n)*p成立的最大的n. 先收集所有的质数和回文数.质数好搜集.回文数奇回文就0-9的数字,然后在头尾添加一个数.在x前后加a,就是x*10+a+a*pow( ...
- Codeforces Round #589 (Div. 2) C - Primes and Multiplication(数学, 质数)
链接: https://codeforces.com/contest/1228/problem/C 题意: Let's introduce some definitions that will be ...
- Codeforces Round #315 (Div. 2)
这次可以说是最糟糕的一次比赛了吧, 心没有静下来好好的去思考, 导致没有做好能做的题. Problem_A: 题意: 你要听一首时长为T秒的歌曲, 你点击播放时会立刻下载好S秒, 当你听到没有加载到的 ...
- Codeforces Round #315 (Div. 2B) 569B Inventory 贪心
题目:Click here 题意:给你n,然后n个数,n个数中可能重复,可能不是1到n中的数.然后你用最少的改变数,让这个序列包含1到n所有数,并输出最后的序列. 分析:贪心. #include &l ...
随机推荐
- jQuery.each(object, [callback])数组对象操作--jQuery 对象访问 $().each(callback)
jQuery.each(object, [callback]) 通用例遍方法,可用于例遍对象和数组. 不同于例遍 jQuery 对象的 $().each() 方法,此方法可用于例遍任何对象.回调函数拥 ...
- 1.java中Comparor与Comparable的问题
1.Comparator中compare()与Comparable中compareTo()方法的区别 Treeset集合创建对象后, A:如果是空构造,即TreeSet<Student> ...
- python macos scrapy ,gevent module
easy_install pip pip install scrapy pip install ipython ImportError: No module named items https://g ...
- Java 运行环境介绍
Java 语言特点: 跨平台性: 一次编译,到处运行.即不受操作系统限制,编译一次,可以在多个平台运行.而这个优势得益于 JVM(Java Virtual Machine, 即Java 虚拟机). 两 ...
- LinkedList基本用法
https://blog.csdn.net/i_lovefish/article/details/8042883
- selectedIndex返回被选中的option的index.
/ <label for="city">城市</label> <select id="city" name="schoo ...
- df: `/root/.gvfs': Permission denied
在使用oracle账户检查本地磁盘情况时,总是出现df: `/root/.gvfs': Permission denied信息提示. [oracle@rac1 ~]$ df -h Filesystem ...
- .net截取字符串
string s=abcdeabcdeabcdestring[] sArray1=s.Split(new char[3]{c,d,e}) ;foreach(string i in sArray1)Co ...
- Python-Cpython解释器支持的进程与线程
一.Python并发编程之多进程 1. multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在pyt ...
- beego——模板语法
一.基本语法 go统一使用{{和}}作为左右标签,没有其它的标签符号. 使用"."来访问当前位置的上下文,使用"$"来引用当前模板根级的上下文,使用$var来访 ...