51nod-1259-分块+dp
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1259
输入1个数N(1 <= N <= 50000)。
输出划分的数量Mod 10^9 + 7。
4
5 与1201相似但是允许出现重复的数,如果还按照1201的写法,复杂度就是平方级了,看了讨论的解法感觉很巧妙。
利用分块将数据分成了[1,sqrt(n)],[sqrt(n)+1,n]两部分,分别用f[i][j]和g[i][j]表示用区间内的数j个组合成和为i的数的方案个数,计算f时无限背包,计算g时使用1201的
方程计算(注意这里的区间最小的值是sqrt(n+1))。最后用乘法原理计算答案ans=SUM{f[n][i]*h[n-i]},其中0<=i<=n,h[i]表示g[i][..]的总和。注意乘法时候会爆int使用longlong就好了。
#include<bits/stdc++.h>
using namespace std;
const int mod=1e9+;
#define LL long long
int f[],g[][];
int main()
{
int n,i,j,k;
cin>>n;
f[]=;
int m=sqrt(n*1.0);
for(i=;i<=m;++i)
for(j=i;j<=n;++j)
f[j]=(f[j]+f[j-i])%mod; g[][]=;
g[m+][]=;
for(i=m+;i<=n;++i)
{
int k=i/(m+);
for(j=;j<=k;++j)
{
if(i+j<=n){
g[i+j][j]=(g[i+j][j]+g[i][j])%mod;
}
if(i+m+<=n){
g[i+m+][j+]=(g[i+m+][j+]+g[i][j])%mod;
}
g[i][]=(g[i][]+g[i][j])%mod;
}
}
LL ans=;
for(i=;i<=n;++i)
ans=(ans+(LL)f[i]*g[n-i][]%mod)%mod;
cout<<ans<<endl;
return ;
}
51nod-1259-分块+dp的更多相关文章
- Codeforces Round #278 (Div. 1) D - Conveyor Belts 分块+dp
D - Conveyor Belts 思路:分块dp, 对于修改将对应的块再dp一次. #include<bits/stdc++.h> #define LL long long #defi ...
- 51nod 1183 编辑距离(dp)
题目链接:51nod 1183 编辑距离 #include<cstdio> #include<cstring> #include<algorithm> using ...
- CF1129D Isolation(分块+DP)
一个很显然的DP方程式:f[i]=Σf[j],其中j<i且在[j+1,i]中出现1次的数不超过k个 乍一看挺神仙的,只会O(n^2),就是对于每个位置从后向前扫一遍,边扫边统计出现1次的数的个数 ...
- LOJ #2802. 「CCC 2018」平衡树(整除分块 + dp)
题面 LOJ #2802. 「CCC 2018」平衡树 题面有点难看...请认真阅读理解题意. 转化后就是,给你一个数 \(N\) ,每次选择一个 \(k \in [2, N]\) 将 \(N\) 变 ...
- 51nod 1043 数位dp
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1043 1043 幸运号码 基准时间限制:1 秒 空间限制:131072 ...
- 51nod 1042 数位dp
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1042 1042 数字0-9的数量 基准时间限制:1 秒 空间限制:131 ...
- 51nod 1009 数位dp入门
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1009 1009 数字1的数量 基准时间限制:1 秒 空间限制:13107 ...
- 51nod 1503 多线程dp
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1503 1503 猪和回文 题目来源: CodeForces 基准时间限制 ...
- [CSP-S模拟测试]:旅行计划(分块+DP)
题目传送门(内部题83) 输入格式 第一行两个整数$n,m$ 接下来$m$行,每行三个整数,$u,v,w$,表示从$u$到$v$有一条权值为$w$的边 接下来一行有一个整数$q$,表示$q$天 接下来 ...
- 51NOD 1705 七星剑 [DP 期望的线性性质]
传送门 题意: 七颗星,第$i$课星用第$j$个宝石有$p[i][j]$的概率成功,失败将为$g[i][j]$颗星: 第$j$个宝石化费$c[j]$ 求最小期望化费 $MD$本来自己思路挺对的看了半天 ...
随机推荐
- cookies与session
一.cookies 本质:浏览器端保存的键值对 方便客户按照自己的习惯操作页面或软件,例如:用户验证,登陆界面,右侧菜单隐藏,控制页面列表显示条数... cookies是由服务端写在浏览器端,以后每次 ...
- Qt隐式共享与显式共享
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/Amnes1a/article/details/69945878Qt中的很多C++类都使用了隐式数据共 ...
- Json反序列化Map的key不能是Object
使用json作为数据传输格式,碰到一个问题.我希望传输的是一个Map<Target, TargetInfo>其中Target是一个对象,作为map的一个key public class T ...
- Django--Web应用介绍/http协议
- JSP--JSP语法--指令--include(动态包含/静态包含)--九大隐式对象--四大域对象--JSP内置标签--JavaBean的动作元素--MVC三层架构
一.JSP 原理:JSP其实就是一个servlet. Servlet负责业务逻辑处理,JSP只负责显示.开发中,JSP中不能有一行JAVA代码 二.JSP语法 1. JSP模板元素:JSP中HT ...
- 通信—HTTP与HTTPS
HTTP是客户端浏览器或其他程序与Web服务器之间的应用层通信协议.在Internet上的Web服务器上存放的都是超文本信息,客户机需要通过HTTP协议传输所要访问的超文本信息. HTTPS(全称:H ...
- tensorflow 中 softmax_cross_entropy_with_logits 与 sparse_softmax_cross_entropy_with_logits 的区别
http://stackoverflow.com/questions/37312421/tensorflow-whats-the-difference-between-sparse-softmax-c ...
- mysql中变量的定义
mysql中的变量定义 mysql的变量分为系统变量和用户变量,mysql系统定义的变量是系统变量,用户自己定义的变量为用户变量.对于系统变量,用户只能够改变它的值不能够创建新的系统变量.对于用户变量 ...
- MySQL数据库Date型数据插入问题
MySQL数据库中,Date型数据插入问题,总是提示如下错误: “java.util.Date cannot be cast to java.sql.Date” 解决办法: 1.首先,获取Date型数 ...
- TensorFlow学习笔记(二)深层神经网络
一.深度学习与深层神经网络 深层神经网络是实现“多层非线性变换”的一种方法. 深层神经网络有两个非常重要的特性:深层和非线性. 1.1线性模型的局限性 线性模型:y =wx+b 线性模型的最大特点就是 ...