【题解】SHOI2014概率充电器
首先发现答案就是每个节点有电的概率之和。有电的概率牵扯太广不好求,所以转化为求没有电的概率。这题最难的部分在于:一个节点如果有电,可以来自儿子,也可以来自父亲。我们考虑将这两个部分分离开来:建立状态 \(g[i]\) 和 \(f[i]\) 分别表示一个节点只考虑子树节点没有电的概率以及不由父亲节点供电的概率。
\(g[u] = (1 - p[u])\prod (g[v] + (1 - g[v]) * (1 - w(u, v))])\)
其中\(v\) 为 \(u\) 的子节点,\(w(u, v)\) 为 \(u, v\) 边有电的概率
利用这个递推式我们可以dfs一遍自下而上获取所有节点的 \(g[u]\);
然后考虑如何求得 \(f[u]\)。要注意由于 \(f[u]\) 是 \(u\) 的父亲不供电给 \(u\) 的概率,所以在利用父亲的信息时应该要除去儿子的影响:
父亲 \(F\) 没有电的概率 \(P = f[F] * \frac{g[F]}{g[u] + (1 - g[u]) * (1 - w(F, u)))} \)
父亲不供电给儿子的概率为 :
\(f[u] = P + (1 - P) * (1 - w(F, u))\)
这样就解决啦~(代码中的 \(f, g\) 与上述描述相反,早期代码请勿介意……)
#include <bits/stdc++.h>
using namespace std;
#define maxn 505000
#define db double
#define eps 0.0000001 int n, cnp = ;
int head[maxn];
db ans, p[maxn], f[maxn], g[maxn]; struct edge
{
int to, last; db co;
}E[maxn * ]; void add(int u, int v, db w)
{
E[cnp].to = v, E[cnp].co = w;
E[cnp].last = head[u], head[u] = cnp ++;
} bool check(db x) { return abs(x - 0.0) < eps; } void dfs(int u, int fa)
{
f[u] = 1.0;
for(int i = head[u]; i; i = E[i].last)
{
int v = E[i].to;
if(v == fa) continue;
dfs(v, u);
f[u] *= f[v] + (1.0 - f[v]) * (1.0 - E[i].co);
}
f[u] *= (1.0 - p[u]);
} void dfs2(int u, int fa)
{
for(int i = head[u]; i; i = E[i].last)
{
int v = E[i].to;
if(v == fa) continue;
db P = g[u] * f[u] / (f[v] + (1.0 - f[v]) * (1.0 - E[i].co));
g[v] = P + (1.0 - P) * (1.0 - E[i].co);
dfs2(v, u);
}
ans += 1.0 - (g[u] * f[u]);
} int main()
{
scanf("%d", &n);
for(int i = ; i < n; i ++)
{
int a, b, p;
scanf("%d%d%d", &a, &b, &p);
add(a, b, (db) p / 100.0);
add(b, a, (db) p / 100.0);
}
for(int i = ; i <= n; i ++) scanf("%lf", &p[i]), p[i] /= 100.0;
g[] = 1.0;
dfs(, ); dfs2(, );
printf("%.6lf\n", ans);
return ;
}
【题解】SHOI2014概率充电器的更多相关文章
- BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]
3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...
- BZOJ3566: [SHOI2014]概率充电器 树形+概率dp
3566: [SHOI2014]概率充电器 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1888 Solved: 857[Submit][Stat ...
- 【BZOJ3566】[SHOI2014]概率充电器 期望+树形DP
[BZOJ3566][SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线 ...
- BZOJ3566 [SHOI2014]概率充电器 (树形DP&概率DP)
3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...
- BZOJ 3566: [SHOI2014]概率充电器( 树形dp )
通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...
- 洛谷 P4284 [SHOI2014]概率充电器 解题报告
P4284 [SHOI2014]概率充电器 题目描述 著名的电子产品品牌SHOI 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- P4284 [SHOI2014]概率充电器
P4284 [SHOI2014]概率充电器 今天上课讲到的题orz,第一次做这种上下搞两次dp的题. g[i]表示i的子树(包括i)不给i充电的概率. f[i]表示i的父亲不给i充电的概率. g[]可 ...
- 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)
3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...
- BZOJ3566 SHOI2014 概率充电器 【概率DP】
BZOJ3566 SHOI2014 概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能 ...
- BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP
BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技 ...
随机推荐
- ORB-SLAM(七)ORBextractor 特征提取
该类中主要调用OpenCV中的函数,提取图像中特征点(关键点及其描述,描述子,以及图像金字塔) 参考TUM1.yaml文件中的参数,每一帧图像共提取1000个特征点,分布在金字塔8层中,层间尺度比例1 ...
- mongoDB在java上面的应用
1.实际应用过程中肯定不会直接通过Linux的方式来连接和使用数据库,而是通过其他驱动的方式来使用mongoDB 2.本教程只针对于Java来做操作,主要是模拟mongoDB数据库在开发过程中的应用 ...
- 一次IPC无法创建的问题
背景说明: 后台子系统都是运行在pc上的linux 系统有多个子系统,有一个子系统负责统一启停其他子系统,这里把这个子系统称为olddriver. ol ...
- C# 浮点转时间
想了大半天实在想不出什么更适合文章的标题... 就现在这个标题,挺好- - 什么是浮点转时间呢? 今天写的一个计时功能,想来想去还是现在这种解决方案比较合适 先上一张图在来讲解比较明了 如图:赛车游戏 ...
- Qt listwigwt item 加入自定义元素
<span style="font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255) ...
- 微信小程序之注释出现的问题(.json不能注释)
js的注释一般是双斜杠// 或者是/**/这样的快注释 .json是配置文件,其内容必须符合json格式内部不允许有注释. JSON有两种数据结构: 名称/值对的集合:key : value样式: 值 ...
- 使用JavaScript判断手机是处于横屏还是竖屏
移动端的浏览器一般都支持window.orientation这个参数,通过这个参数可以判断出手机是处在横屏还是竖屏状态.从而根据实际需求而执行相应的程序.通过添加监听事件onorientationch ...
- 【json提取器】- 提取数据的方法
json 提取器的使用 方法 json 提取器 提取的结果 我用调试取样器进行查看
- block inline 和 inline-block
概念 block和inline这两个概念是简略的说法,完整确切的说应该是 block-level elements (块级元素) 和 inline elements (内联元素). block元素通常 ...
- Python入门(3)
一.列表 列表是用来储存和处理多个数据的数据类型,我们可以像下面这样来创建一个列表: my_list = [1, 2, 3] 列表和数学中的集合很像,但是,列表中的数据是可以重复,并且他们是有序的,列 ...